KNO14: Leading by example: lessons from Arctic biodiversity monitoring programs

This memo provides a summary of reports submitted on the session KNO14 organized at the Arctic Biodiversity Session in Rovaniemi, Finland, October 9-12 organized by Aarhus University, Zackenberg Research Station and Polar Knowledge Canada: Canadian High Arctic Research Station.

Attendance: 45

Arctic Biodiversity Assessment recommendation themes most prominently addressed in the session:

- Climate change
- Ecosystem-based Management
- Mainstreaming biodiversity
- Identifying and safeguarding important areas
- Improving knowledge and public awareness

Key points raised in the session that were important to note:

- General Status Ranking Program:
 - GNWT collects > 100,000 data points annually
 - These data should be shared to facilitate better land management
 - Helps lead to conservation status using NatureServe Canada methods

- Falk - Arctic Raptor Populations:
 - Arctic Falcons Specialist Group
 - Focal Ecosystem Components are reported to the CBMP terrestrial
 - Peregrines show generally no change or positive trends

- Gyrfalcon:
 - Driven by ptarmigan fluctuations
 - Hatching date moving forward
 - A useful species for tracking contaminants

- Sokolov-Yamal terrestrial Monitoring:
 - Area is warming rapidly
 - Oil and gas development, accounts for 80% of national production
 - Largest reindeer herd in the world
 - Long term biodiversity data back to 1950s
 - CAVM Zones E-B - N-S transect the 4 research stations
 - Rodent cycles linked directly to buzzard abundance
 - Rain on snow caused the death of 100,000 reindeer
 - Red fox abundance increasing

- Soininen - COAT Monitoring Site - Svalbard/Varanger (northern Norway mainland)
 - Adaptive management approach
 - Conceptual models and food webs linked to management and mitigation
o link target species to state variables
- will link state models to statistical models in the future
- Patterson - Inuit IK and Avian cholera in Common Eiders
 o Avian cholera is a widespread conservation issue and was first detected in Arctic in Nunavik in 2004
 o Birds die within 48 hours of infection
 o Important Inuit species - meat, eggs and down
 o IK and local observations provided the baseline data for understanding outbreaks
 o Many observations would never have been detected by biologists due to remote vast areas
- Gilg - Interactions Working Group
 o Direct and indirect effects on predator-prey interactions
 o Circumpolar study sites - focus on harmonizing protocols
 o Informal observations of lemmings provides the same general information as live trapping
 o Shorebird nesting success and use can be estimated using a simple temp gauge - HOBO
- Biodiversity monitoring is expensive and laborious; therefore, it is often best to establish monitoring for few main taxonomic groups to start with and add new groups in later stages
- The decision-making (conservation, sustainable use of resources) needs reliable, up-to-date forecasting models. Models for predicting environmental effects should be “flexible” and easily updated when new information is available.
- Civil science and traditional knowledge can be used to enhance spatial and temporal coverage of biodiversity data.
- Important role that Inuit IK played in detecting avian cholera and confirming science research hypotheses in Common Eiders in Nunavik

Recommendations/actions identified for how to deal with the issues raised in the session:
- Relatively simple and monitoring approaches, like inexpensive temperature sensors, can detect important changes (residence, use) and activities (predation rates) in shorebird nests
- Allocate limited resources to monitoring of selected taxon groups with high indicator value. Increase knowledge on other taxons when funding allows (screening campaigns etc.).
- Develop models which allow easy and quick update and input of additional data and indicators.
- Alternative data sources (Civil science, TK, big data) should be utilized in Biodiversity monitoring.

Take home message from the session:
- International collaboration and harmonizing monitoring protocols provide a useful circumpolar picture of biodiversity change in terrestrial predator - prey systems.
- Allocate available monitoring resources to key taxons and groups, and add new groups, when resources are available. Create easily up-dated predictive models. Use additional data sources and monitoring methods.