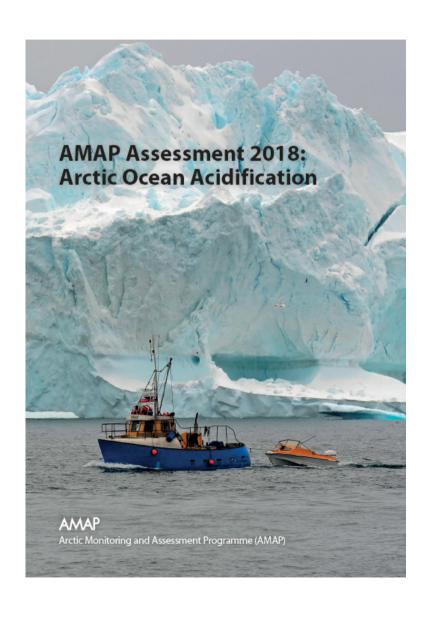
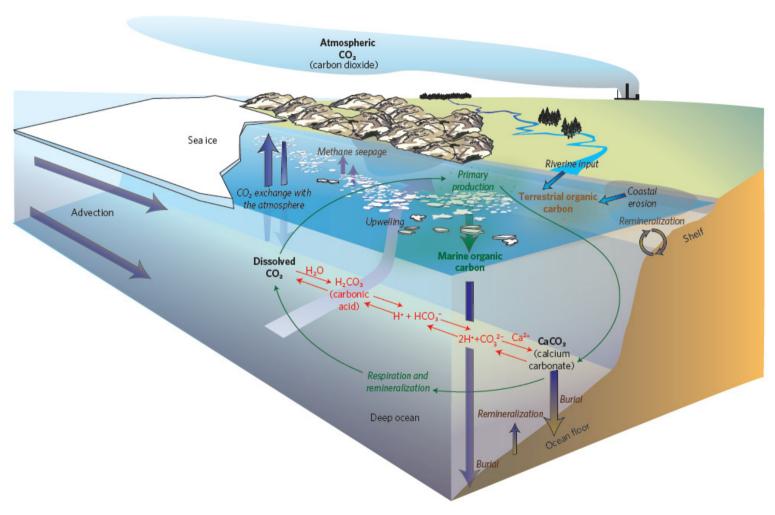
Key findings of the AMAP Arctic Ocean Acidification report - the need for ecosystem sensitivity research

Richard Bellerby

Norwegian Institute for Water Research, Bergen, Norway

East China Normal University, Shanghai, China





AOA 2018 report has just been published

3.	Biological responses to ocean acidification.	
3	3.1 Introduction	
3	3.2 Responses of key organisms	
	3.2.1 Viruses	
	3.2.2 Bacteria and archaea	
	3.2.3 Phytoplankton	
	3.2.4 Foraminifera	
	3.2.5 Macroalgae	
	3.2.6 Corals	
	3.2.7 Mollusks	
	3.2.8 Echinoderms	
	3.2.9 Crustaceans	
	3.2.10 Other invertebrates	
	3.2.11 Fishes	
	3.2.12 Seabirds and mammals	
3	3.3 Responses of ecosystems and habitats	
3	3.4 Acclimation and adaptation	
	3.5 Interactive effects in a multi-stressor environment	
3	3.6 Conclusions	
	Appendix: Manipulative experimental studies	

Processes controlling the carbonate system in the Arctic

Bellerby 2017. Nature Climate Change

The Arctic is acidifying; with strong local to regional variability

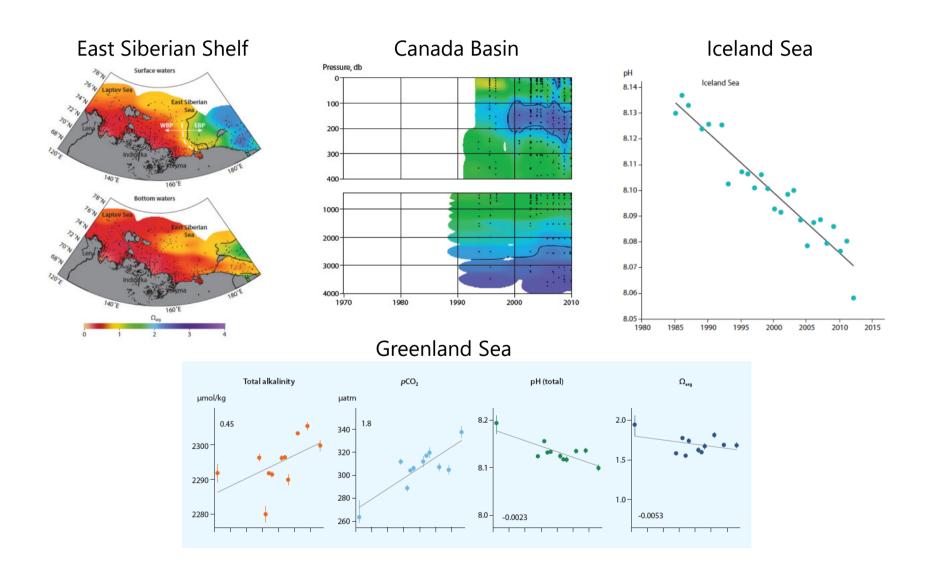
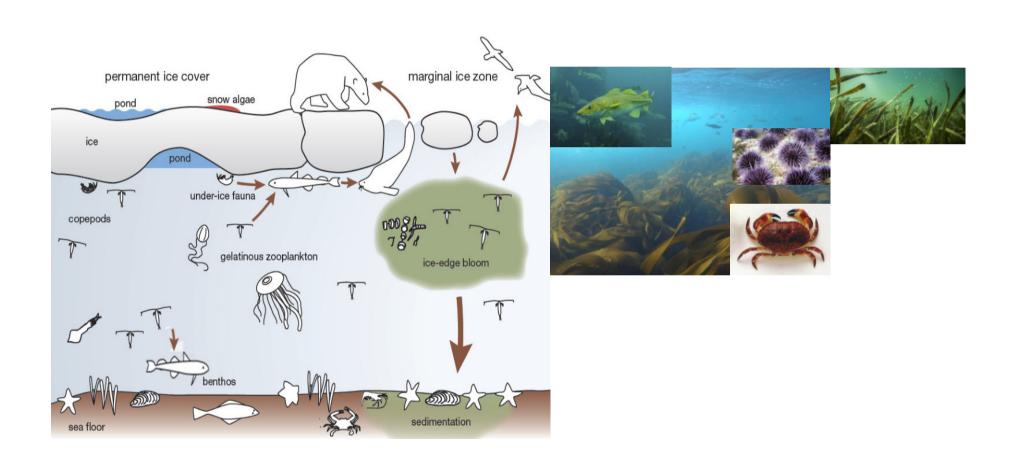
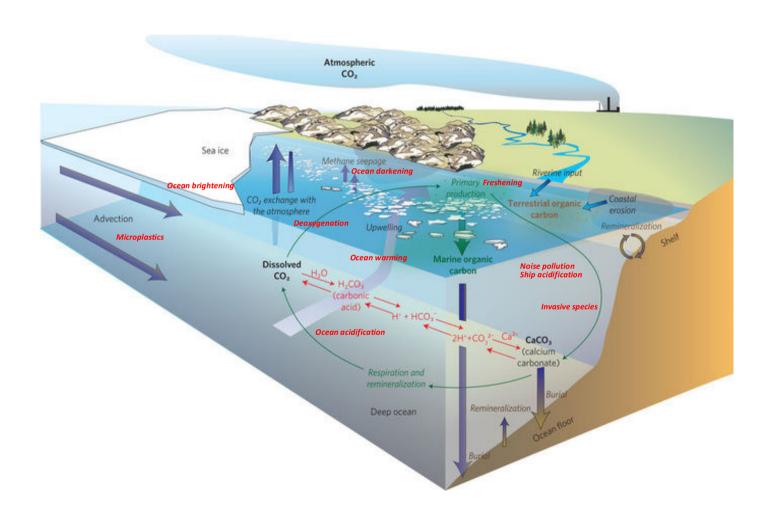



Table A3.1 cont.


ection / Source	Study species	/ community / assemblage	Location
Wood et al. 2008	Brittlestar	Amphiura filiformis	UK
Dupont et al. 2008	Brittlestar	Ophiothrix fragilis	Sweden
Chan et al. 2015	Sea urchin / Brittlestar	Strongylocentrotus purpuratus / Amphiurafiliformis	USA / Sweden
Hu et al. 2014a	Brittlestar	Amphiura filiformis	Sweden
Gonzalez-Bernat et al. 2013	Seastar	Odontaster validus	Antarctica
Dupont and Thorndyke 2012	Sea urchin, Seastar	Strongylocentrotus droebachiensis, Leptasterias polaris	Arctic
Verkaik et al. 2016	Sea cucumber	Cucumaria frondosa	Newfoundland
Yuan et al. 2016	Sea cucumber	Apostichopus japonicus	China
Morita et al. 2010	Coral, Sea cucumber	Acropora digitifera, Holothuria spp.	Japan
Yuan et al. 2015	Sea cucumber	Apostichopus japonicus	China
3.2.9 / Crustaceans			
Bailey et al. 2016	Copepod	Calanus glacialis	Svalbard
Bailey et al. 2017	Copepod	Calanus glacialis	Svalbard
Thor et al. 2016	Copepod	Calanus glacialis	Svalbard
	Copepod	Calanus glacialis	Svalbard (Kongsfjord / Billefjord) : West Greenland
Hildebrandt et al. 2014	Copepod	Calanus glacialis, Calanus hyperboreus	Fram Strait
Hildebrandt et al. 2016	Copepod	Calanus finmarchicus, Calanus glacialis	Fram Strait
Weydmann et al. 2012	Copepod	Calanus glacialis	Svalbard
Thor et al. 2018b	Copepod	Calanus glacialis	Svalbard
Niehoff et al. 2013	Mesozoo	Svalbard	
Engel et al. 2013	Plankton community		Svalbard
	Spider crab	Hyas araneus	Germany, Svalbard
Walther et al. 2011	6.11		Sweden
	Spider crab	Hyas araneus	
Walther et al. 2011	Spider crab	Hyas araneus Hyas araneus	Svalbard
Walther et al. 2011 Schiffer et al. 2014			Svalbard Alaska
Walther et al. 2011 Schiffer et al. 2014 Zittier et al. 2013	Spider crab	Hyas araneus Paralithodes camtschaticus,	
Walther et al. 2011 Schiffer et al. 2014 Zittier et al. 2013 Long et al. 2013	Spider crab Red king crab, Tanner crab	Hyas araneus Paralithodes camtschaticus, Chionoecetes bairdi	Alaska
Walther et al. 2011 Schiffer et al. 2014 Zittier et al. 2013 Long et al. 2013 Appelhans et al. 2012	Spider crab Red king crab, Tanner crab Seastar, Green crab	Hyas araneus Paralithodes camtschaticus, Chionoecetes bairdi Asterias rubens, Carcinus maenas	Alaska Baltic Sea
Walther et al. 2011 Schiffer et al. 2014 Zittier et al. 2013 Long et al. 2013 Appelhans et al. 2012 Fehsenfeld and Weihrauch 2013	Spider crab Red king crab, Tanner crab Seastar, Green crab Green crab	Hyas araneus Paralithodes camtschaticus, Chionoecetes bairdi Asterias rubens, Carcinus maenas Carcinus maenas	Alaska Baltic Sea Canada
Walther et al. 2011 Schiffer et al. 2014 Zittier et al. 2013 Long et al. 2013 Appelhans et al. 2012 Fehsenfeld and Weihrauch 2013 Fehsenfeld et al. 2011	Spider crab Red king crab, Tanner crab Seastar, Green crab Green crab Green crab	Hyas araneus Paralithodes camtschaticus, Chionoecetes bairdi Asterias rubens, Carcinus maenas Carcinus maenas Carcinus maenas	Alaska Baltic Sea Canada Baltic Sea
Walther et al. 2011 Schiffer et al. 2014 Zittier et al. 2013 Long et al. 2013 Appelhans et al. 2012 Fehsenfeld and Weihrauch 2013 Fehsenfeld et al. 2011 Hammer et al. 2012	Spider crab Red king crab, Tanner crab Seastar, Green crab Green crab Green crab Green crab	Hyas araneus Paralithodes camtschaticus, Chionoecetes bairdi Asterias rubens, Carcinus maenas Carcinus maenas Carcinus maenas Carcinus maenas Carcinus maenas	Alaska Baltic Sea Canada Baltic Sea Norway
Walther et al. 2011 Schiffer et al. 2014 Zittier et al. 2013 Long et al. 2013 Appelhans et al. 2012 Febsenfeld and Weihrauch 2013 Febsenfeld et al. 2011 Hammer et al. 2012 Arnold et al. 2009	Spider crab Red king crab, Tanner crab Seastar, Green crab Green crab Green crab Green crab Green crab European lobster	Hyas araneus Paralithodes carntschaticus, Chionoecetes bairdi Asterias rubens, Carcinus maenas Carcinus maenas Carcinus maenas Carcinus maenas Carcinus maenas Homarus gammarus	Alaska Baltic Sea Canada Baltic Sea Norway UK

			ification treatment		
CO	₂ , μatm	(2O _{2s} ppm	pН	
	11	-	1t	1.5	11
				8	7.7,7.3,6.8
				8.1	7.9,7.7
458±32 / 425±13	1078±48, 2993±188 / 1126±83				
				8.1	7.6, 7.3, 7.0
327	691, 1130, 4604				
350	1275				
446±22	1427±100				
		~380	~750, 1900		
		400-475	775-1005, 930-1260, 905-1660, 2115-3585, 12600-21100		
601±10	962±15,1441±21, 2801±25				
530	320, 800, 1700				
530	320, 800, 1700				
335-361	871-1060				
150±95 / 446±93 / 436±64	712±134 to 18567±2163 (8 treatments) / 638±49 to 4526±499 (6 treatments) / 721±91 to 19456±3521 (8 treatments)				
390	3000				
390	1120,3000				
				8.2	7.6, 6.9
				~8.0	~7.5
185	270, 375, 480, 685, 820, 1050, 1420				
178	180, 255, 345, 435, 611, 701, 892, 1136				
		380	710, 3000		
450	3300				
380	750, 1120, 3000				
438±9	792±7,1638±14				
650	1250, 3500				
				7.7	7
~490	~ 2600, 7600, 16000, 30000			8.00-8.12	7.24-7.36
	30000	380	1200		
450	1100,9000				
-690	750, 1200				
68-361 / 419-469	1291-1332 / 1388-1493				

Ecosystem effects

The Arctic Ocean ecosystem is coming under increasing pressure from multiple stressors

Adapted from Bellerby 2017. Nature Climate Change

- The effects of acidification, in combination with other stressors, are highly uncertain. That uncertainty is compounded when other environmental, social and economic responses and trends are also considered. There is a need for multi-stressor research into how species are likely to respond.
- Ecosystem changes should be monitored in such a way that allows for the identification and differentiation of the impact of each stressor on the ecosystem, as well as the potential synergistic effects of multiple combined stressors.

- Monitoring should also be extended to the North Atlantic, given the biological, commercial and subsistence importance of fisheries in these waters and the impact of outflow of increasingly acidified water from the Arctic basin.
- There is a need for more Arctic-specific research into acidification and its effects, whether regarding impacts on species, habitats or economic consequences. Currently, the lack of such research means many findings are extrapolated from research undertaken in other geographic regions.

- Indigenous and traditional knowledge has been included to a very limited extent, and future work would benefit from actively involving local communities in monitoring and research projects.
- There is a need for research into longer-term responses of Arctic species and ecosystems to ongoing environmental change. Laboratory research into physiological responses and genetic adaptation will be key to improving predictions of these responses over time.

- Enhancing research and monitoring of Arctic Ocean acidification must continue to be a high priority within the Arctic Council to promote cooperation between Arctic countries.
- There is need for a unified monitoring program to harmonize and support adaptation actions in the Arctic and also to provide Arctic communities with the tools and training to conduct local, unified research and monitoring.

A new international working group on ocean services in marginal seas

Co-Chairs: Prof. Richard Bellerby (SKLEC-NIVA, Shanghai/Bergen)
Prof. Su Mei Liu (Ocean University of China, Qingdao)

- Identify key system services, stakeholders, regulatory institutions and process
- Identify recent historical and present variability in marginal seas services
- Couple environmental and ecological change to services
- Develop scenarios of future marginal seas services
- Optimise boundary conditions towards informed co-adaption to coastal change

