Abundance and species diversity hotspots of tracked marine predators across the North American Arctic

D. J. Yurkowski, M. Auger-Méthé, M. L. Mallory, S. N. P. Wong, H. G. Gilchrist, A. J. Gaston, A. E. Derocher, E. Richardson, N. J. Lunn, N. E. Hussey, M. Marcoux, R. Togunov, A. T. Fisk, L. A. Harwood, R. Dietz, A. Rosing-Asvid, E. W. Born, A. Mosbech, J. Fort, D. Grémillet, L. Loseto, P. R. Richard, J. Iacozza, F. Jean-Gagnon, T. M. Brown, K. H. Westdal, J. Orr, B. LeBlanc, S. T. Kessel, P. Blanchfield, S. Davis, M. Maftei, N. Spencer, L. McFarlane-Tranquilla, W. A. Montevecchi, B. Bartzen, C. Anderson & S. H. Ferguson

Near-apex and apex predators

- Integrate resources across several spatial and temporal scales
 - Highly mobile
 - Sentinels to ecosystems
- Strong top-down trophic control

Boyce et al. 2015 – Ecology Letters 18: 1001-1011

Arctic ecosystem stressors

- Climate change
- Shipping
- Mining
- Fisheries potential
- Oil and gas exploration and exploitation

Overland et al. 2016 – Nat. Clim. Change 6:992-999

Important to identify areas that sustain higher levels of abundance and biodiversity for conservation and management measures

Protected areas

3.7% - implemented

1.8% - designated

2.0% - proposed

Global goal of 10% by 2020

Biotelemetry

Revolutionized study of animal movement ecology

Provide insight into:

- Fish-fishing fleet interactions
- Environmental drivers of habitat use
- Species diversity hotspots
- Identify critical conservation areas

Generally been species-specific in Arctic

Species

Species	N individuals	N days
Cetaceans and pinnipeds		
Beluga	115	8286
Bowhead	40	7267
Narwhal	76	7212
Ringed seal	130	16528
Harbour seal	19	4084
Walrus	38	1490
Polar bears	312	65203
Seabirds		
Common eider	134	16772
King eider	94	7173
Ivory gull	12	4739
Sabine's gull	26	6959
Ross's gull	2	735
Herring gull	28	4913
Long-tailed duck	44	2200
Dovekie	28	16455
Northern fulmar	5	852
Parasitic jaeger	3	757
Thick-billed murre	63	15094
Fishes		
Greenland shark	45	164
Greenland halibut	7	14
Arctic skate	3	6

Approach and objectives

Compiled data from 1283 individuals across 21 species - 1989-2016

- Cetaceans and pinnipeds ARGOS
- Polar bears ARGOS and GPS
- Seabirds ARGOS and GLS
- Fishes Pop-off

- ARGOS and GLS
 - state-space model at 1d time-step
- GPS
 - 1 location per day
- 186,786 daily location estimates
- Summer-autumn (June to December)
- Winter-spring (January to May)

Objectives:

- 1) Map species diversity hotspots across the Arctic by season
- 2) Assess overlap of species diversity hotspots relative to protected areas and exclusive economic zones by season

Hotspot analysis

- 50km x 50km grid cells
- Unique number of species per grid cell that season
- Getis-Ord Gi* statistic
 - Tests for significantly higher ("hotspots") and lower ("coldspots") spatial clustering among grid cells

Objective 1 - species diversity hotspots

West – Along coastline and continental shelf (summer)

Nutrient-rich Pacific water flowing eastward; Winter - Cape Bathurst Polynya

East – Lancaster Sound and along Baffin Island coastline (summer)

Fjords have high organic carbon content; Winter - Mobile pack ice offshore

South – Waters around Southampton Island and Hudson Strait (summer)

Higher primary productivity; Winter - Mobile pack ice

Objective 2 – hotspots relative to PAs and EEZs

Objective 2 – hotspots relative to PAs and EEZs

Level of conservation protection is very low across the North American Arctic

Total protected area overlap of 77,498 km² (5%) and 83,202 km² (7%)

- Summer: 15% in East, <1% in West and South
- Winter: 14% in East and <1% in West and South

Provide starting point to policy-makers to address deficiency in conservation protection

Objective 2 – hotspots relative to PAs and EEZs

		Spatial overlap	Percentage overlap
	EEZ	(km²)	(% area)
Summer-autumn			
	Canada	992,766	65.17
	U.S.A.	332,251	21.81
	Greenland	90,582	5.95
	Russia	107,809	7.08
Winter-spring			
	Canada	798,429	66.92
	U.S.A.	173,204	14.52
	Greenland	163,811	13.73
	Russia	57,713	4.84

Most hotspots within national jurisdictionslikely easier to implement protection?

Highlights need for multi-national collaboration and data-sharing

Conservation implications

Climate change

- Associated with declines in body condition
- Species redistribution and 're-wiring' of the food web

Fisheries exploitation

- Increase risk of bycatch mortality
 - Greenland shark and seabird

Shipping

 Increase risk of ship strikes, ice-breaking, Noise pollution

Oil and gas exploration and exploitation

- Seismic surveys
 - ecosystem disruption
 - Increase zooplankton mortality
 - Clyde River and Supreme Court of Canada

Future directions

- Large-scale retrospective analysis implemented by several other programs
 - Antarctica RAATD
 - Pacific Ocean GTOPP
 - Atlantic Ocean SEATRACK
 - No such programs for Arctic Ocean

- Incorporate:
 - more species data
 - environmental data
 - data types (i.e. acoustic telemetry, at-sea observations, TEK)
- Share telemetry resources amongst Arctic nations
- Implementation of appropriate multinational regulations and adaptive conservation strategies to protect the Arctic

ArcticTRAILS

Acknowledgements

Hunter's and Trapper's Associations across the Arctic and their hunters

