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PART | — Effects of grazing on Change in Maximum Annual
circumpolar tundra vegetation Normalized Difference Vegetation Index (NDVI)
productivity (1982-2016)

Arctic tundra vegetation has been highly
dynamic over the course of the recent
satellite record (since 1982).

Whereas the general pattern has been
one of “greening,” in other words
increases in vegetation abundance and
productivity, the dynamics have been
highly heterogeneous over space and
time, including regions and periods of
tundra “browning,” decreases in
vegetation abundance and productivity.

How much has grazing influenced these
patterns and dynamics?
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ArcVeg — Arctic Tundra Vegetation Dynamics Model
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Epstein et al. (2000, 2001, 2004, 2007) ArcVeg has 12 Plant Functional Types (PFTs).
Yu et al. (2009, 2011, 2017) Grazing is selective in ArcVeg.




Circumpolar Arctic Region
‘egetation

Cryptagam, harl: bamran
Cryptogam karren complax (badrock)

W Honcabenate mourtain complex

W Carbanate mountain complex
Frostrate dwarf-shrub, harb tundra
FrostratefHamiprastrate dwarf-shrulz tundra
Rushigrass, forb, cryptogam tundra
Gramincid, prostrate dwarf-shirub, fork tundra
Mantussock sadge, dwarf-shrubk, moss tundra
Tusscck sedge, dwarf-shrul, mass tundra
Erect dwart-shiub tundra

W Low-shrub tundra.
Sadgelgrass, moss wetland
fadae mass. chearf-shnib weatland
Sadge. mass, lavw-shrub wetland

# Nunatak complex
Glaciers

I iater
Lagoon
Man-Arctic Areas

I omrwrowroarer

ISR

el Lo Ll EILELS S e L
Lriglads ALy, "L, _anadzulungn s

CAVM (2003)

Canada

: 1 : #
- RS o =

MODEL INPUT DATASETS

Current and projected distribution of
the tundra bioclimate subzones from
the Circumpolar Arctic Vegetation Map
(CAVM)
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Reindeer and caribou distribution data from the CircumArctic Rangifer Monitoring
and Assessment (CARMA) Network

Grazing Frequency

Circumpolar distribution of reindeer and caribou
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There are currently no circumpolar datasets for soil nitrogen, so we used output from

the Terrestrial Ecosystem Model (TEM) (e.g. Hayes et al. 2011, 2014)
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ArcVeg simulations with four different climate/grazing
scenarios, evaluating isolated and combined effects of
climate change and herbivory on vegetation productivity.

Above-
ground
biomass

Slmulatlon scenarios Climate Herbivory

Control

Herbivory effects

Before climate warming No herbivory

Before climate warming Current herbivory regimes

Warming effects Projected climate warming No herbivory
Coupled/combined effects Projected climate warming Current herbivory regimes



Climate and Herbivory Effects on Aboveground Tundra Biomass

Projected temperature-related change

Simulated herbivory-related change
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- Climate change projections are largely for increased tundra aboveground

biomass/productivity.

- Grazing reduces aboveground tundra biomass/productivity, particularly in western

Siberian tundra.




Individual effects of climate and herbivory

Simple difference between climate and
grazing caused biomass change
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Figure 4. Per cent of subzone pixels with significant (p < 0.05)

positive trend.

Epstein et al. (2012)

* Most of the biomass changes are in the three southernmost subzones

* Very little change in subzones A (2.1%) and B (6.4%)



Coupled effects of climate and herbivory

Coupled effects of climate and herbivory
caused change
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On average, grazing is constraining
the “greening” of the arctic tundra
by approximately 5% (greater in
areas with dense herds)

Mean aboveground biomass change (g m)

- Coupled effects diminish the individual effects
of herbivory, indicating vegetation resilience
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Yu et al. (2017)



Part Il — Ecosystem Functional Diversity and Herbivory

New NASA Ecological Forecasting / Biodiversity project supporting the GEO-BON Work
Programme (don’t expect results yet)
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Project Background

* Biodiversity hierarchy can be assessed along three
dimensions: composition, structure, and function (Noss,
1990)

* Primary production (carbon cycling) dynamics are
integrative descriptors of ecosystem function and an
Essential Biodiversity Variable candidate of GEO-BON
(Pereira et al., 2013; Skidmore et al., 2015)

* Ecosystem Functional Diversity based on dynamics of
primary productivity can be assessed by means of
Ecosystem Functional Types (EFTs), patches of the land
surface that process energy and matter in similar ways
and potentially show coordinated responses to
environmental factors (Valentini,1999; Paruelo et al.
2001).

* QOur goals is to develop an Ecosystem Functional Diversity
set of products for the Circumpolar Arctic

genelic
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life histories
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intergctionsg,
ecosysiem processes
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and dislurbances,
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FUNCTIONAL




Ecosystem Functional Types derived from spectral vegetation
indices (contributing to a set of Functional Biodiversity
variables)

* EFTs: Patches of the land-surface with similar dynamics of matter and/or energy
exchanges between the biota and the physical environment (Paruelo et al. 2001,
Alcaraz-Segura et al. 2006).

* One example is to identify EFTs from functional attributes of the seasonal curve of a
spectral vegetation index (e.g. NDVI, EVI):

lity)

As an example, if we
have three attributes of
a seasonal NDVI curve,
and bin the values of
each attribute into
guartiles, we will have
maximum of 64 EFTs —
some combinations
may not exist.
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Not a completely new idea
EFTs denote areas of functional similarity
Agnostic to vegetation composition or structure
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Developing Functional Diversity Variables

EFTs: ecosystems with similar
exchanges of matter and energy
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Each RS pixel is
classified as a
single EFT

Grouping contiguous
pixels (upscaling)
provides the data for
functional diversity
variables

EFT Richness, Dominance, Rarity
Composition, Diversity (Shannon-Wiener etc.)



e w Setting geographic conservation
i priorities for ecosystem
functional diversity using EFTs
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Using the new raster version of the Circumpolar Arctic Vegetation Map (CAVM), we can...
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1) Identify the functional diversity within vegetation types
2) Identify different vegetation types that may be functioning similarly.



Circumpolar Arctic Example NDVI Seasonal Variation
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EFT maps of the Yamal and Taimyr Peninsulas (managed vs. wild Rangifer herds)

- PC1 related to June-August NDVI magnitude; PC2 related to NDVI seasonality
- Greater EFT diversity on the Taimyr compared to the Yamal




