

AMAP 2018 - Biological Effects of Contaminants in Arctic Wildlife & Fish: <u>An Introduction</u>

Rune Dietz¹, <u>Robert J. Letcher</u>², Igor Eulaers¹, Jean-Pierre Desforges¹, Christian Sonne¹

² Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research

¹ Department of Environmental Science, Arctic Research Centre, Aarhus University, Roskilde, Denmark

Centre, Carleton University, Ottawa, Ontario, Canada

Arctic Biodiversity Congress, Rovaniemi, Finland; Octpber 9-12, 2018

Acknowledgements

Assessment Co-leads

Rune Dietz and Robert J. Letcher, **Assessment Co-lead team** (alphabetically) Jean-Pierre Desforges, Igor Eulaers, Christian Sonne, Simon Wilson

Contributing authors (alphabetically)

Emilie Andersen-Ranberg, Benjamin D. Barst, Niladri Basu, Jan Ove Bustnes, Jenny Bytingsvik, Tomeck M. Ciesielski, Paul E. Drevnick, Geir W. Gabrielsen, Ane Haarr, Ketil Hylland, Bjørn Munro Jenssen, Eva Kruemmel, Milton Levin, Melissa A. McKinney, Jennifer Provencher, Jannie Staffansson, Sabrina Tartu

Data and sample contributors (alphabetically)

Josh T. Ackerman, Rob Barrett, Anders Bignert, Dorete Bloch, Erik W. Born, Marsha Branigan, Birgit Braune, Colleen E. Bryan, Maria Dam, Rune Dietz, Collin A. Eagles-Smith, John E. Elliott, David C. Evers, Marlene Evans, Thomas J. Evans, Aaron T. Fisk, Geir W. Gabrielsen, Mary Gamberg, Alex Hartman, Björn Helander, Lisa B. Helgason, Mark P. Herzog, Allyson K. Jackson, Bjørn M. Jenssen, Audrey Jæger, John Kucklick, Elisabeth Lie, Lisa Loseto, Robert J. Letcher, Derek C.G. Muir, Anders Mosbech. Elizabeth Peacock, Sara H. Peterson, Anuschka Polder, Frank F Rigét, Pat Roach, Heli Routti, Filipa Samarra, Halvor Saunes, Janneche U. Skaare, Christian Sonne, Eydfinn Stefansson, Gary Stenson, Gary Stern, Jens Søndergaard, Stacy Vander Pol, Gisli Vikingson Governments, northerners, communities, hunters and trappers associations, local hunters, field and laboratory workers and all those people from across the circumpolar Arctic who make everything we do possible

An Update on Effects Assessments

AMAP Assessment 2011

Mercury in the Arctic

2009

covering knowledge on organohalogen effects from 2004 to 2009

covering knowledge on mercury effects from 2004 to 2010

2011

2018

covering knowledge on organohalogen and mercury effects from 2010 to 2016/2017

Key messages

https://www.amap.no/documen ts/doc/Biological-Effects-of-Contaminants-on-Arctic-Wildlife-and-Fish.-Key-Messages/1664

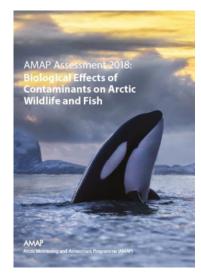
Technical report (pre-print watermarked)

https://www.amap.no/documen ts/doc/AMAP-Assessment-2018-Biological-Effects-of-Contaminants-on-Arctic-Wildlife-and-Fish-Preprint/1663

An assessment of the biological effects of organohalogen and mercury contaminants in Arctic wildlife and fish

1.	PCBs	polychlorinated biphenyls mostly the sum of a varying number of congeners	- Added 2001 (Annex A)
2.	OCPs	organochlorine pesticides hexachlorobenzene, hexachlorehexanes,	
		chlordane-like compounds and dichlorodiphenyltrichloroethane-like compounds	- Added 2001 (Annex A)
3.	FRs	flame retardants mostly polybrominated diphenylethers (PBDEs)	
4.	PFASs	and <u>hexabromocyclododecane</u> <u>poly- and per-fluoroalkyl substances</u> mostly carboxylic acids, such as	 Added 2013 (Annex A)
		perfluorooctanesulfonate (PFOS), perfluorohexane sulfonate (PFHxS), 20	 Added 2009 (Annex B) 018 (under consideration for listing) 018 (under consideration for listing)
_			(all all all all all all all all all all

<u>mercury</u> - mostly total mercury (THg)



Hg

5.

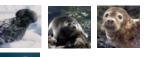
Scope of the 2018 Effects Assessment

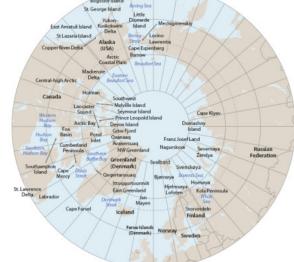
An assessment of the biological effects of organohalogen and mercury exposure in <u>Arctic wildlife and fish</u>

1. marine mammals

2. terrestrial mammals

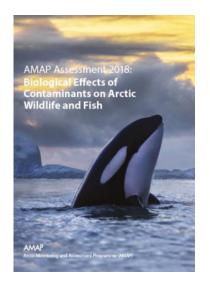
3. seabirds


Figure 1.1 Regions from which


contaminant exposure and effect studies were available for the present assessment.

4. birds of prey

5. fish



Aleutian Islands

Regions from which contaminant exposure and effects studies were available

All studies based on correlative relationships between POP tissue/blood & biomarker concentration – <u>Weight of Evidence only</u>

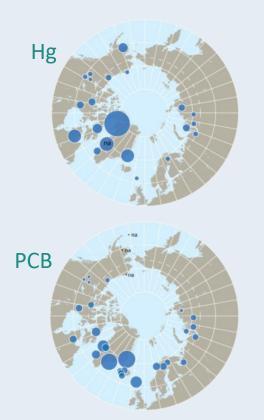
An assessment of the <u>biological effects</u> of organohalogen and mercury contaminants in Arctic wildlife and fish

- 1. <u>vitamin regulation and status*</u> vitamines A, D, E, tocopherols, ...
- 2. <u>enzyme activity*</u> cytochrome P450s, ...
- 3. <u>oxidative stress</u> reactive oxygen species
- 4. <u>hormone levels*</u> thyroid and steroid hormones
- 5. <u>reproduction</u> egg shell thicknes, gonad size, ...
- 6. <u>DNA damage (genotoxicity)</u> DNA strand breaks, telomer length, ...

- 7. <u>immune system function*</u> lymhocyte proliferation, interleukin expression, ...
- 8. <u>tissue pathology, skeleto- and</u> <u>histopathology</u> liver and renal malformation, bone mineral density, ...
- 9. <u>neurotoxicity and behaviour</u> cholinergic receptors, gammaaminobutyric acid, ...
- 10. <u>bioenergetics</u> basal metabliic rate, emaciation, ...
- 11. <u>blood clinical chemistry</u> glucose, total proteins, alkaline phosphatase, ...

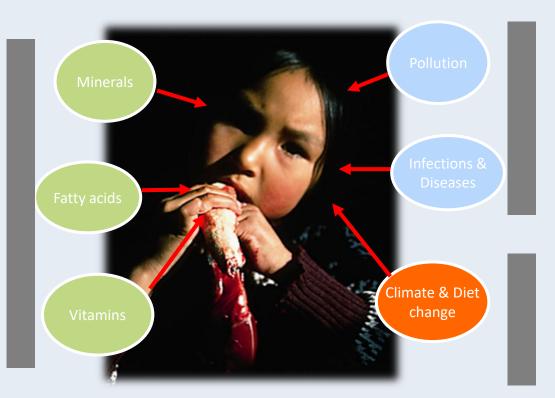
*Indicates endpoints most commonly and consistently included in Arctic wildlife and fish studies since 2010.

CAFF 11. OCT 2018



DEPARTMENT OF BIOSCIENCE ROSKILDE ARCTIC RESEARCH CENTRE CENTER FOR ARCTIC HEALTH AARHUS UNIVERSITY

CONTAMINANT EXPOSURE AND EFFECTS IN ARCTIC WILDLIFE



AMAP BACKGROUND: ONEHEALTH IN THE ARCTIC

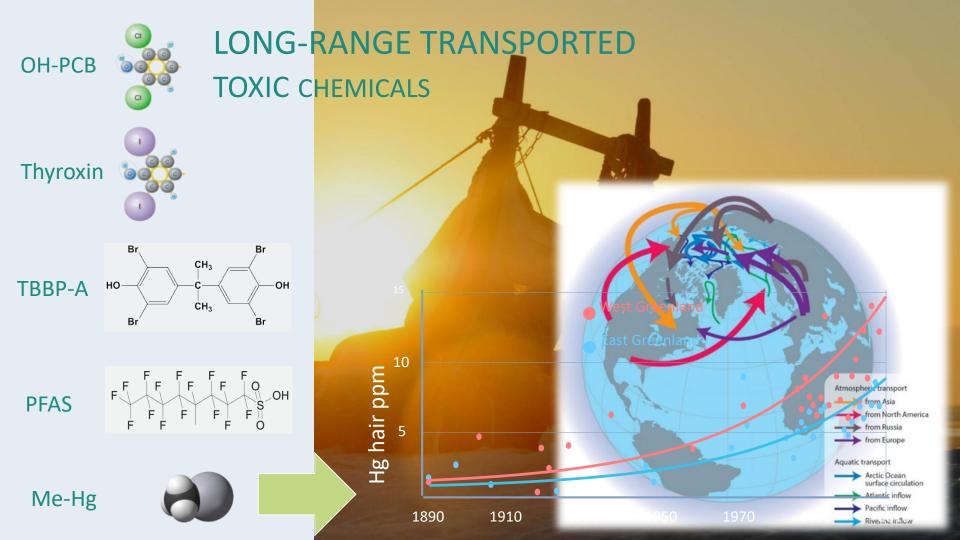
resilience

AND fragility

POLAR BEARS

- ARE UNIQUE MONITORING ORGANIMS

GLOBAL IMPACT

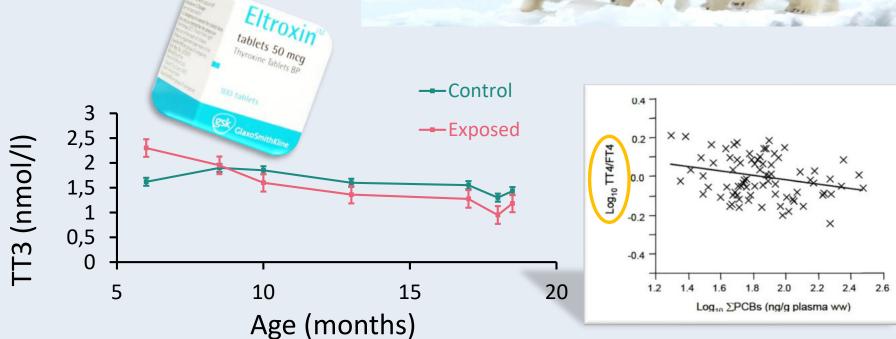

- PUBLIC, SCIENCE & REGULATIONS

... AND THE SAME FOR BIRDS

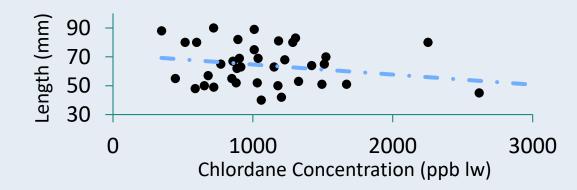
... survival, culture and health

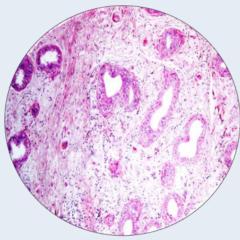
PROBLEM: NEURO-ENDOCRINE DISRUPTION

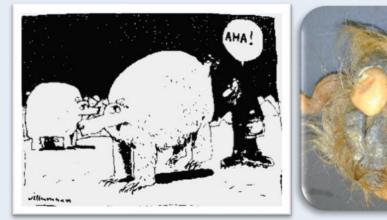
Lactation transfer

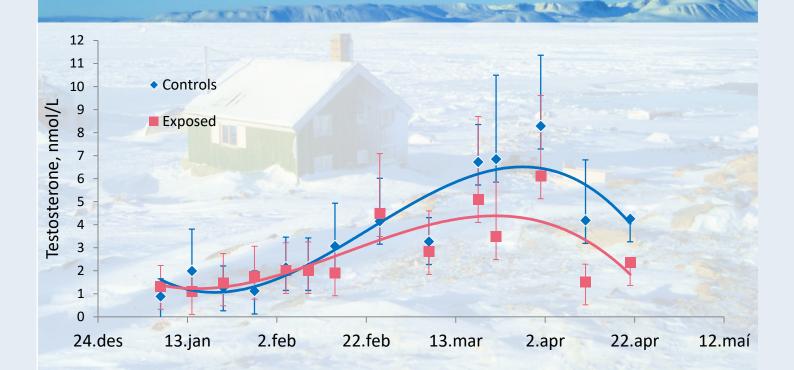


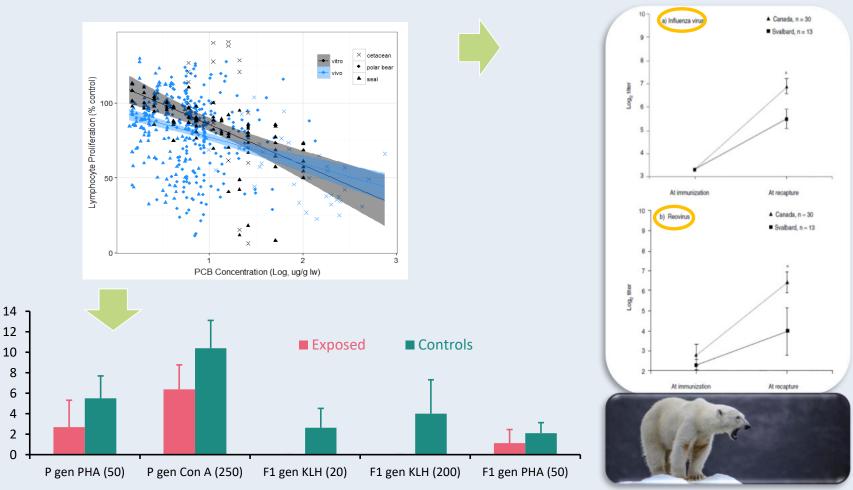
THE LIST OF EFFECTS...


Endocrine glands Sexual organs Liver and kidney CNS Immune system Bones

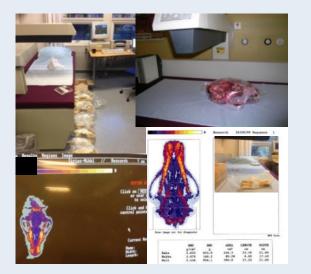

HYPOTHYROIDISM IN POLAR BEARS AND SLED DOGS



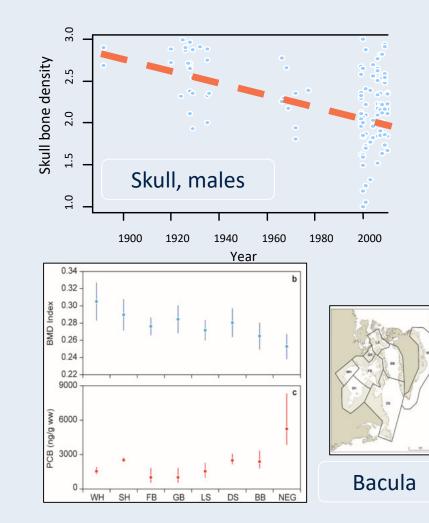

TESTICULAR DYSGENESIS SYNDROM: DO POLAR BEAR TESTICLES SHRINK?



TESTOSTERONE PRODUCTION IN ARCTIC FOXES EXPOSED TO PCBs

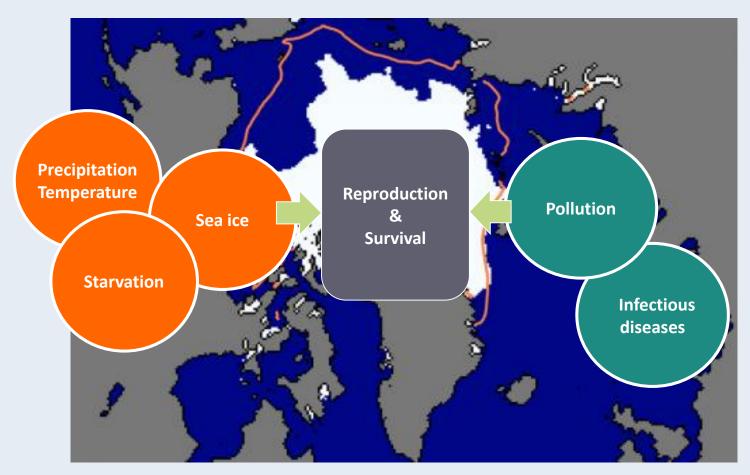


IMMUNE TOXICITY: SLED DOGS AND POLAR BEARS


Wheal diameter (mm)

DO POLAR BEAR MALES HAVE OSTEOPOROSIS?

UNINTENDED BUT IMPORTANT OUTREACH (LAST WEEK TONIGHT SHOW)



TAKE A LOOK AT THE NEW ASSESSMENT!

	Thyroid hormones	Steroid hormones	Vitanias	Histopathology	Reportaction	Immunotoxicity	Bood	Oxidative stress	Gentoxicity	Oxidative stress	Gentuxicity
	Thyneid receptor capronies Disolutions capronies Blood 1713 Blood 1713 Blood 1713 71 Blood 1713 71 Blood 1714 71 Blood 1714 71 Blood 1714 71 Blood 1714 71 Blood 1714 71 Blood 1714 71	Block programmers Block projections Entradistic Entradistic Mood anticolification Mood anticolification Block anticol formones All experimen-	Liver vitamin A Block vitamin A Muhbar vitamin A Liver vitamin E Block vitamin E Block vitamin E Liver vitamin D	Liver pathodogy Renal pathology Thyroid pathology Bone mineral dansity	Neurological toxicity Reproductive performance Reproductive organs Eggshelf thinning	ILI expression Immune system Amtibody response Lymyhocyte response	Liver BCCPs Kidney BCCPs Beene BCCPs	CYP-450 BOS	Genotomicity	Bone BCCPs CVP-450	ROS Genotoxicity
farine mammals											
Polar bear		A	AV V P P	A A > V	A			A	A		
Pilot whale	A A A X Y Y A Y Y		V A V A A	A A							
Beluga			* & & * & &		*	Y					
Ringed seal			¥ A		*	A 7		*			
Hoeded seal		n	narine mam	mals							
Baikal seal	+ +		A A								
Grey seal			A A								
Killer whale	A			A A							
Narwhal											
elammam laisterr						1					
Caribon and moose				A A							
hirds											
Glaucous gull	Y Y	A 7 A									
Northern fulmar	* · · · · · · · · · · · · · · · · · · ·		A				¥ ¥				
Ivory gull			A								
Common eider			seabirds								
Thick-billed murre			Jeanus								
Nack-legged kittiwake	A A	A A									
Great skua		* *					VA.				
ds of prey								_			
White tailed eagle			raptors			1	V V V				
h						1					
Greenland shaek			*								
Arctic char		*	fish					*			
Sculpin			11311								
stinel model species											
Greenland sledge dogs		Y Y Y A	TALL TARA	A A .	-	٧	¥ ¥				
Parmed Arctic fox		sent	tinel model	specie	S						

AND KEEP AND EYE ON THE OTHER STRESSORS!!

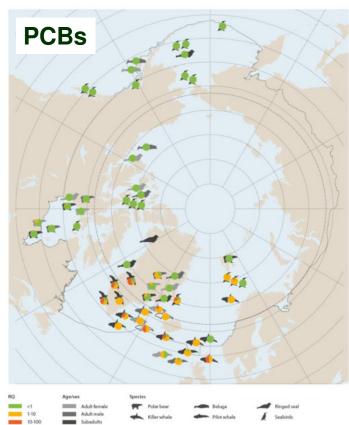
AMAP 2018:

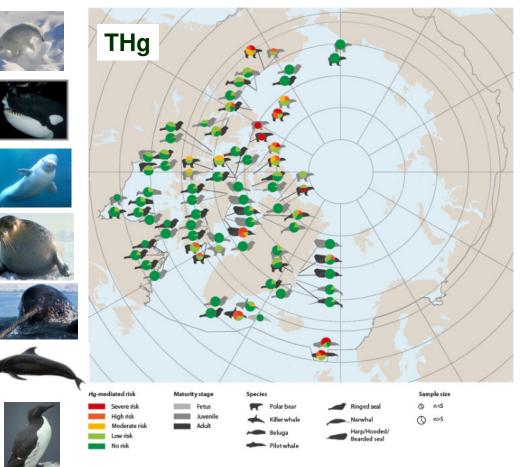
Risk Evaluation of PCBs and Hg in Marine and Terrestrial Mammals and Birds

<u>Rune Dietz</u>¹, Robert J. Letcher², Igor Eulaers¹, Jean-Pierre Desforges¹, Christian Sonne¹

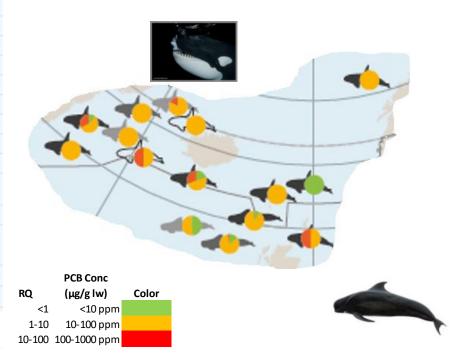
¹ Department of Environmental Science, Arctic Research Centre, Aarhus University, Roskilde, Denmark

² Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada


Arctic Biodiversity Congress, Rovaniemi, Finland; Octpber 9-12, 2018



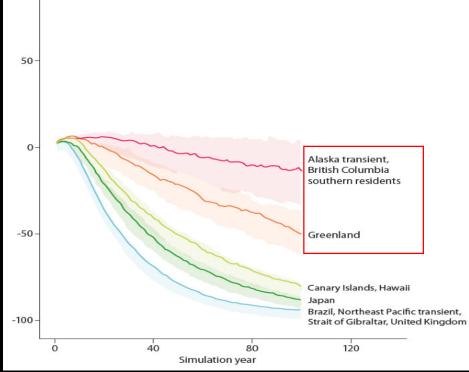
Risk Quotients (RQs) for Effects (on Immune and Hormone Levels) by <u>PCBs in Marine Mammals/Seabirds and THg in Marine Mammals</u>


Fetus

Risk Quotients (RQs) for Effects (on Immune system and reproduction) by <u>PCBs in Marine Mammals and seabirds</u>

Species	Region	Region Years Age/set		RQs, %			
				<1	1-10	10-100	
Toothed whales							
Killer whale	East Greenland	2012-2013	Ad Female	0	83	17	
	East Greenland	2012-2013	Ad Male	0	100	0	
	East Greenland	2012-2013	Sub-adult	0	100	0	
	East Greenland	2012-2013	Fetus	0	100	0	
	East Greenland	2013	Ad Male	0	100	0	
	East Greenland	2012-2014	Ad Female	0	100	0	
	East Greenland	2012-2014	Sub-adult	11	56	33	
	East Greenland	2012-2014	Fetus	50	50	0	
	Iceland	2003-2013		19	50	31	
	Faroe Islands	2008		0	100	0	
	Faroe Islands	2008	Ad and Sub-adult Female	100	0	0	
	Shetland	2013		0	50	50	
	Northern Norway	2002		0	100	0	
Pilot whale	Faroe Islands	2001-2012	Immature	9	90	1	
		2001-2007	Adult male	14	82	4	
		2001-2011	Adult female	48	52	0	
RQ A	ge/sex Species Adult fomale Polar bear Adult male Killer whale Subadults Fetus	eluga Beluga Pilot whale	Ringed seal				

North Atlantic toothed whales killer whales and pilot whales



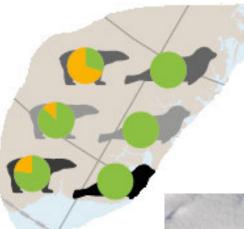
Population effects on killer whales

Population as a percentage of the starting population size

100

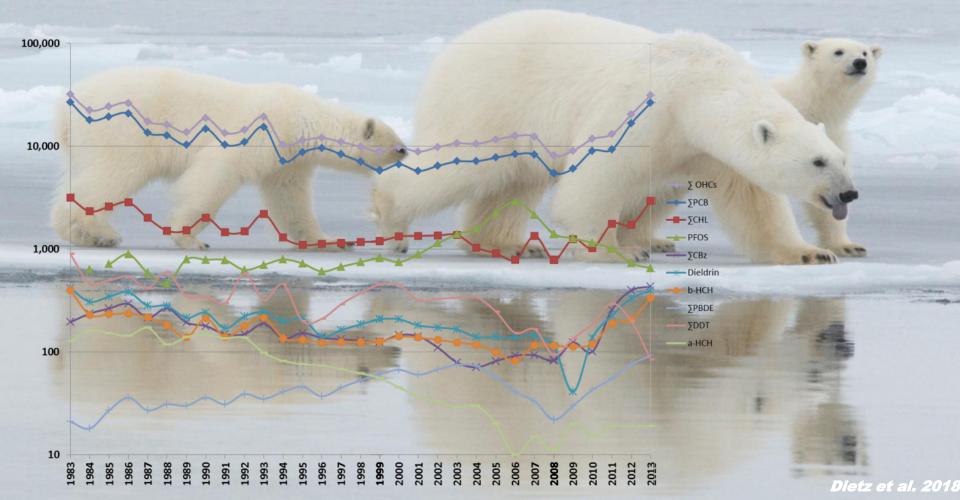
Populations with negative growth

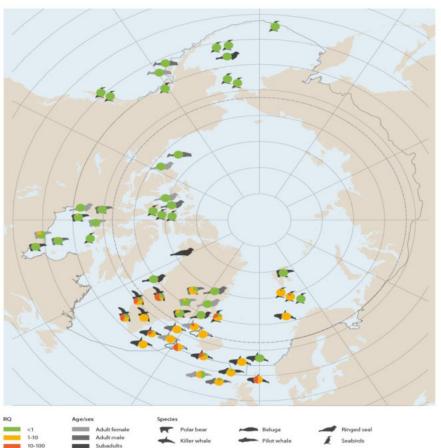
The good the bad and <u>the ugly</u>


Desforges et al. 2018 Science 361: 1373–1376

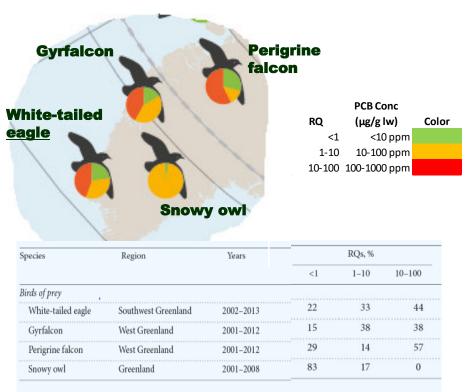
Risk Quotients (RQs) for Effects (on Immune system and reproduction) by <u>PCBs in Marine Mammals and seabirds</u>

Fetus

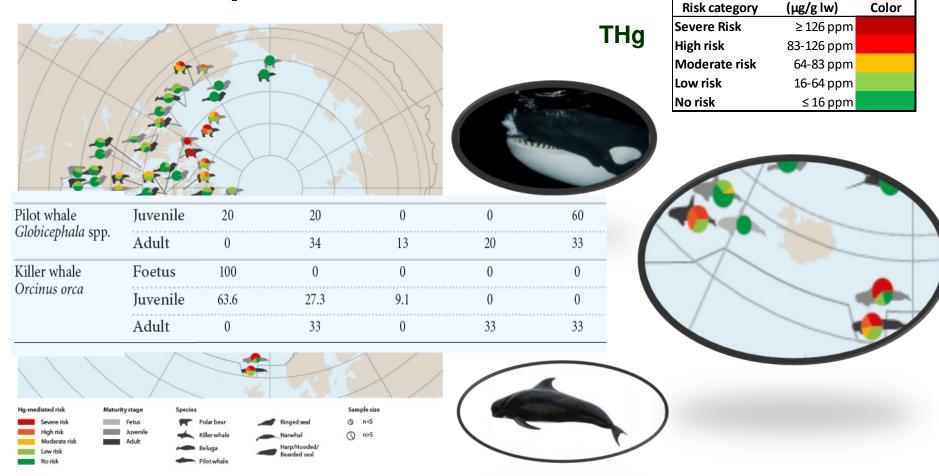

East Greenland polar bears


	PCB Conc	
RQ	(µg/g lw)	Color
<1	<10 ppm	
1-10	10-100 ppm	
10-100	100-1000 ppm	

Risk qoutients over time in East Greenland juvenile bears



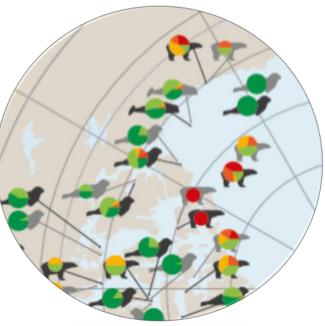
Risk Quotients (RQs) for Effects (on Immune system and reproduction) by <u>PCBs in Marine Mammals and seabirds</u>



Fetu

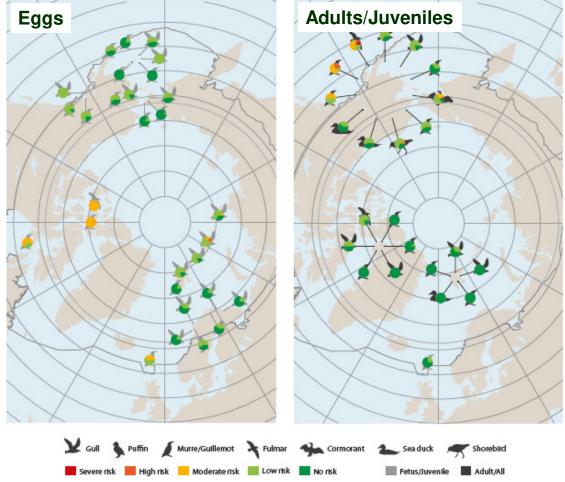
Greenland birds of prey <u>White tailed eagles, gyrfalcon,</u> <u>peregrin falcons and snowy owl</u>

Effects categories from THg in Marine Mammals Killer whales and pilot whales



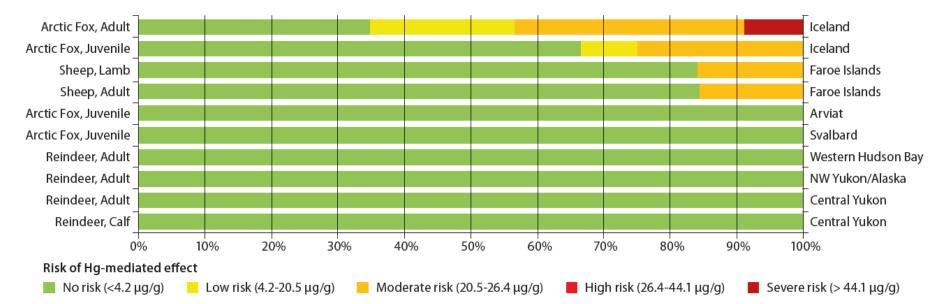
PCB Conc

Effects categories from THg in Marine Mammals Polar bear


Region	Maturity	Risk category							
		<16	16-64	64-83	83-126	≥126			
		No effect	Low risk	Moderate risk	High risk	Severe risk			
Baffin Bay	Juvemile	33	50	17	0	0			
	Adult	0	67	0	33	0			
Chuckchi Sea	Juvemile	100	0	0	0	0			
	Adult	100	0	0	0	0			
Davis Strait	All	0	83	0	17	0			
Gulf of Boothia	All	0	50	50	0	0			
Lancaster/Jones Sound	Juvenile	0	40	20	20	20			
	Adult	0	38	38	25	0			
Northern Beaufort Sea	Juvenile	0	44	33	22	0			
	Adult	0	18	6	35	41			
Southern Beaufort Sea	Adult	0	14	43	14	29			
Southern Hudson Bay	Adult	75	25	0	0	0			
Western Hudson Bay	Juvenile	60	40	0	0	0			
	Adult	50	50	0	0	0			
Ittoqqortoormiit	Juvenile	76	24	0	0	0			
	Adult	40	52	3	2	3			

	PCB Conc	
Risk category	(µg/g lw)	Color
Severe Risk	≥ 126 ppm	
High risk	83-126 ppm	
Moderate risk	64-83 ppm	
Low risk	16-64 ppm	
No risk	≤ 16 ppm	

Risk Quotients (RQs) for THg-Mediated Effects on in <u>Seabirds</u>


Effects categories from THg-Mediated effects on in <u>Seabirds</u>

Black guillemot, Fetus			1			_				-	Farce Islands
Northern fulmar, Fetus	12			-						0	Prince Leopold Islan
Thick-billed murre, Fetus											Coats Island
Rhinoceros auklet, Adult		-		6	ò.						Western North Ame
Ivory gull, Fetus											Domashny
Glaoucous gull, Fetus											Norton Sound
Glaoucous gull, Adult				-	G						Western North Ame
Common murre, Adult											Western North Ame
Glaoucous gull, Fetus											Bering Sea
Glaucous-winged gull, Fetus											Gulf of Alaska
Northern fulmar, All				A complete							Svalbard
-											Gulf of Alaska
Common murre, Fetus											-
Ivory gull, Fetus				2						8	Nagurskoe
Black-legged kittiwake, Fetus											Svalbard
Northern fulmar, All				8	3						Qaanaaq
Thick-billed murre, Fetus		3		6	6						Gulf of Alaska
Glaucous-winged gull, Adult											Western North Ame
Atlantic puffin, Fetus				3	3		3				Lofoten
Common murre, Fetus											Norton Sound
Thick-billed murre, Fetus											Aleutian Islands
Glaucous-winged gull, Fetus		12) 13		1							Bering Sea
Glaucous gull, Fetus					2						Bering Strait
King eider, Adult											Western North Ame
Glaucous gull, All		2		S.	N						Qaanaaq
Glaucous gull, Fetus				6							Hornøya
Herring gull, Fetus											Lofoten
Thick-billed murre, Adult					-						Western North Ame
Glaucous gull, All											Svalbard
Black guillemot, Juvenile						_					Faroe Islands
Black guillemot, Adult								_		-	Western North Ame
Common murre, Fetus						-					Aleutian Islands
Thick-billed murre, Fetus											Svalbard
Black-legged kittiwake, Fetus	- 2										Lofoten
				1	÷			_			
Black-legged kittiwake, Fetus				J.							Hornøya
Herring gull, Fetus				8	8						Hornøya
Common murre, Fetus		1		8	4		8	1			Bering Strait
Thick-billed murre, All)							Qaanaaq
Thick-billed murre, Fetus	1	20 31		2	X			2			Bering Strait
Common murre, Fetus				2	0.						Bering Sea
Thick-billed murre, Fetus)			() (i				Bering Sea
Common eider, All	1	3		1			1 3				Svalbard
Black guillemot, All	2	8		2	2			1	8		Qaanaaq
Little auk, All											Svalbard
Little auk, All				8		0	y (Qaanaaq
Thick-billed murre, All											Svalbard
Black-legged kittiwake, All											Svalbard
Black-legged kittiwake, All				1							Qaanaaq
DIACK-IEDOBO KIUTWAKE AT											

Terrestrial mammals

AMAP 2018:

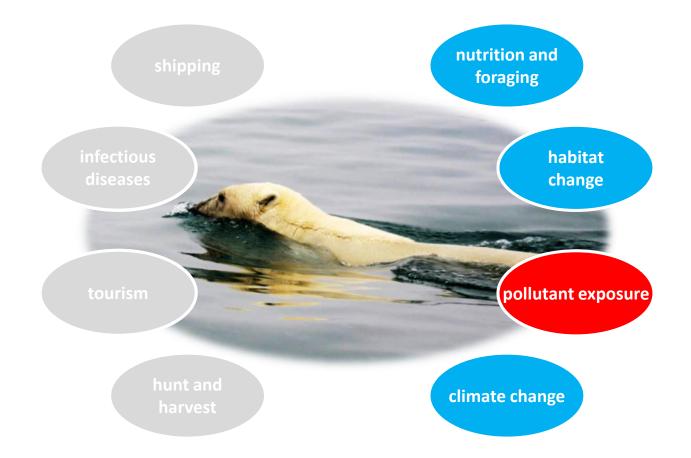
Contaminant Exposure, Pathways and Effects in a Changing Arctic

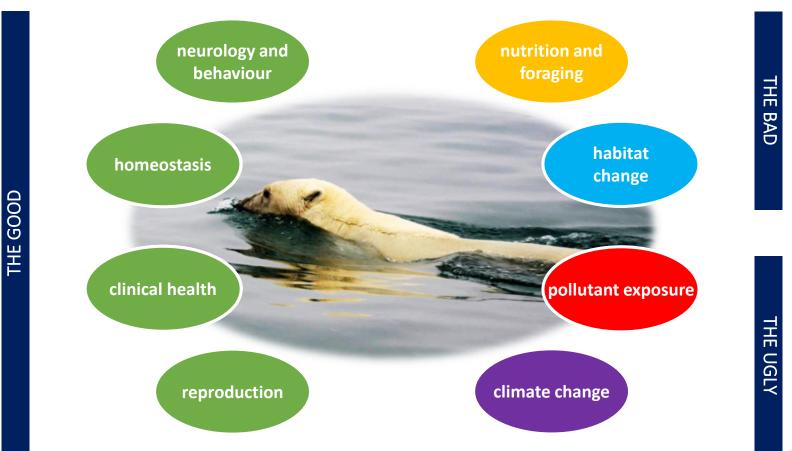
Rune Dietz¹, Robert J. Letcher², Igor Eulaers¹, Jean-Pierre Desforges¹, Christian Sonne¹

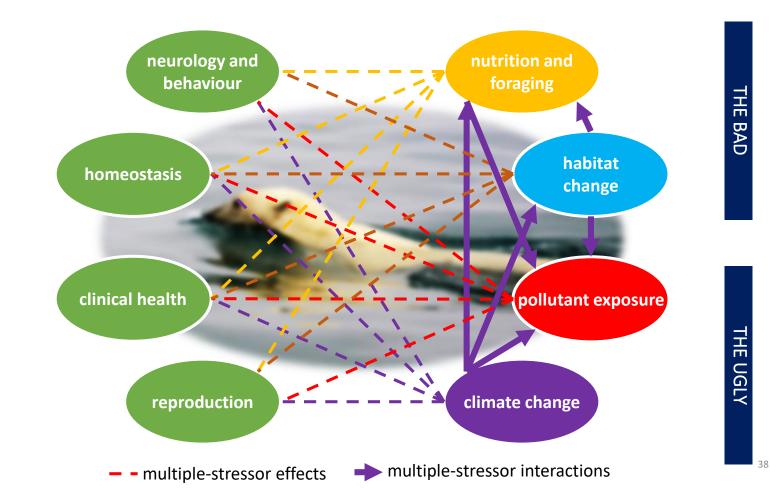
² Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research

¹ Department of Environmental Science, Arctic Research Centre, Aarhus University, Roskilde, Denmark

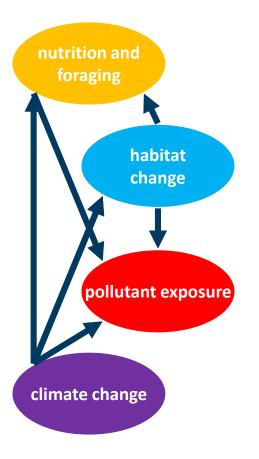
Centre, Carleton University, Ottawa, Ontario, Canada

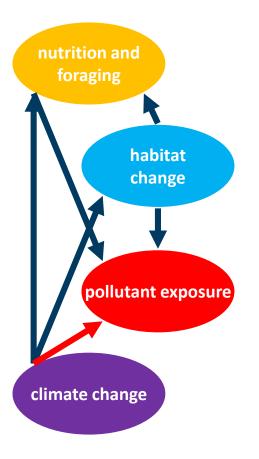

Arctic Biodiversity Congress, Rovaniemi, Finland; Octpber 9-12, 2018

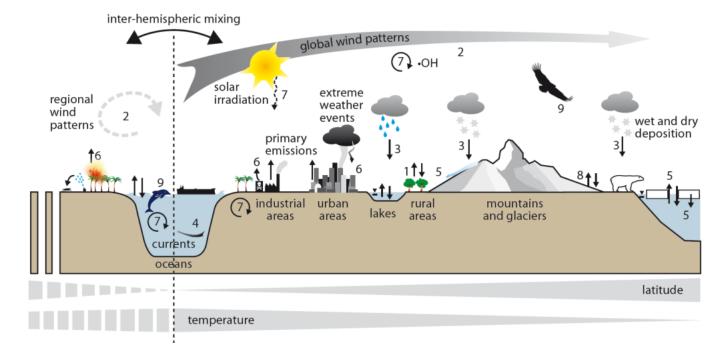




A rapidly multi-facetted changing environment

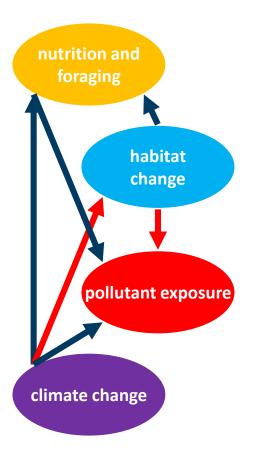

A rapidly multi-facetted changing environment

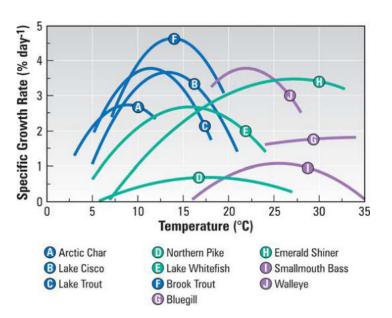



THE GOOD

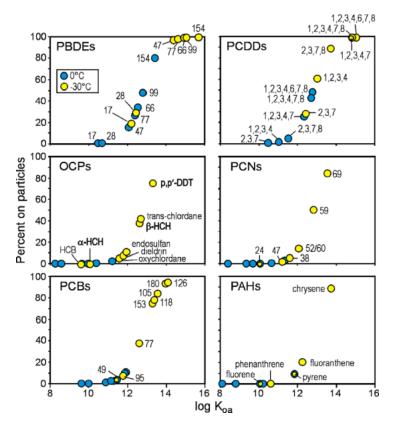
- 1. environmental pathways of contaminants
- 2. habitat properties resulting in changing exposure
- 3. habitat properties resulting in changing dietary ecology and hence contaminant pathways
- 4. nutrition and foraging resulting in changing exposure

- 1. environmental pathways of contaminants
- 2. habitat properties resulting in changing exposure
- 3. habitat properties resulting in changing dietary ecology and hence contaminant pathways
- 4. nutrition and foraging resulting in changing exposure

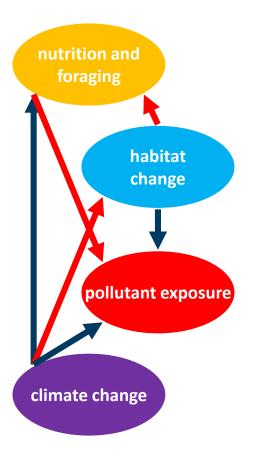



- 1. secondary revolatisation
- 2. atmospheric dynamics
- 3. precipitation

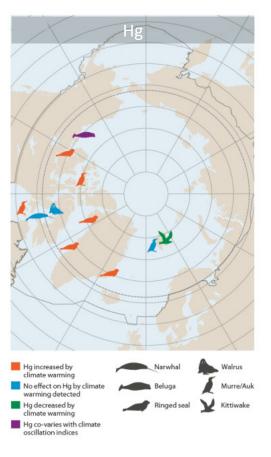
- ocean currents
- 5. melting of ice caps
 - 6. extreme event frequency
- 7. degradation + transformation
- 8. environmental partitioning
- 9. biotic transport


- 1. environmental pathways of contaminants
- 2. habitat properties resulting in changing exposure
- 3. habitat properties resulting in changing dietary ecology and hence contaminant pathways
- 4. nutrition and foraging resulting in changing exposure

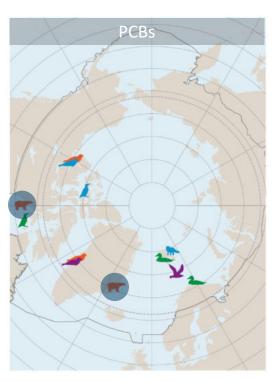
changing biological process



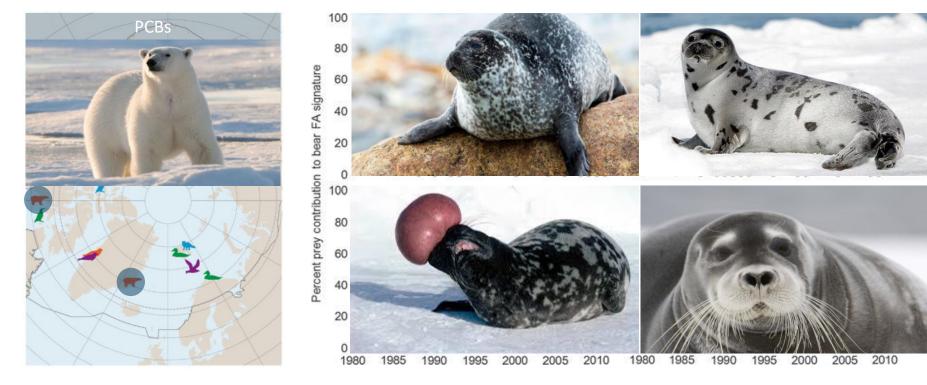
changing environmental chemistry


Macdonald et al. 2005. Sci. Total Environ. 342 Rejst et al. 2006. Ambio 35

- 1. environmental pathways of contaminants
- 2. habitat properties resulting in changing exposure
- 3. habitat properties resulting in changing dietary ecology and hence contaminant pathways
- 4. nutrition and foraging resulting in changing exposure



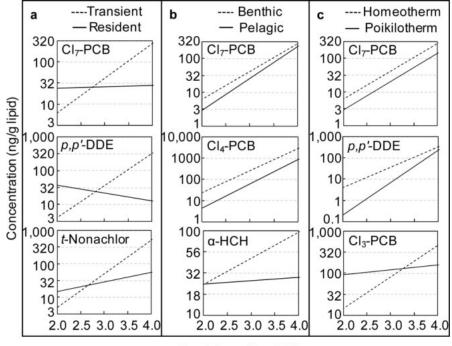
Changing habitats comes with changing dietary pathways of contaminants


🖡 Ringed seal 🛛 🚬 Eider

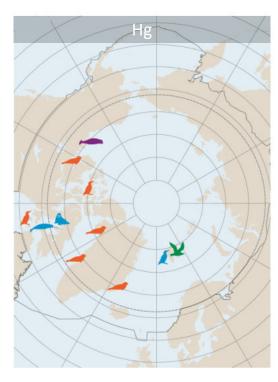
species-specific case studies

Study species	Year	Location	Climate metric	Ecological change/variation	PCB/Hg		Reference	
					Influence	Variation/change		
CBs								
errestrial mammals								
Arctic fox	1997-2013	Svalbard	Sea-ice extent	Diet (marine vs terrestrial)	ΣPCB	++	Andersen et al. 2013	
tarine mammals								
Ringed seal	1993-2008	Eastern Amundsen Gulf	Sea ice break up date	Prey availability or type	CB31, CB52, CB101, CB118, CB138, CB153, CB180	†in years of earlier break-up	Gaden et al. 2012	
	1993-2008	Eastern Amundsen Gulf	Sea ice break-up date	Prey availability or type	CB28, CB105, CB156	*	Gaden et al. 2012	
	1994-2010	West Greenland	Arctic Oscillation, Ocean temperature, Salinity, Sea-ice cover	Prey availability or type	CB153 CB52, CB153	↑ in years of ↓ ice ↑ with ↑ AO or ↑ salinity (related to abiotic inputs)	Rigét et al. 2013	
Polar bear	1991-2007	Western Hudson Bay	Sea ice break-up date	Diet (subarctic vs Arctic seals)	ΣPCB	† instead of \ trend	McKinney et al. 200	
	1984-2011	East Greenland	North Atlantic Oscillation	Diet (subarctic vs Arctic seals)	ΣΡCB, CB170/CB190, CB180, CB153	Not significantly slower rate of \downarrow trend	McKinney et al. 201	
tarine birds								
Glancous gull	1997-2006	Bjørnøya	Arctic Oscillation	Possibly foraging region, diet or condition	ΣΡCB	\uparrow in colder years ([AO), but \uparrow if warmer the previous year (\uparrow AO), (possibly related to \uparrow transport)	Bustnes et al. 2010	
Common eider	2005-2009	Northern Norway and Svalbard	Air temperature	Body mass loss / lipid mobilization during fasting	CB153	\uparrow in circulating levels in colder years and in colder region (Svalbard)	Bustnes et al. 2012	
Thick-billed marre	1975-2013	Canadian High Arctic			ΣΡΟΒο		Braune et al. 2015	
	1993-2013	Northern Hudson Bay	Sea-ice conditions	Diet (subarctic vs Arctic fish)	ΣPCB _{eP}	Faster rate of ↓ trend	Braune et al. 2015	
Polar be	ar 🧴	Murre	No effect on PCBs of	PCBs increased	bv			
Arctic fo	× ¥	Glaucous climate warming detected PCBs decreased by	climate warming PCBs co-vary with climate					
Ringed coal		Fidor	climate warming	oscillation indic	oscillation indices			

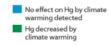
Changing habitats comes with changing dietary pathways of contaminants



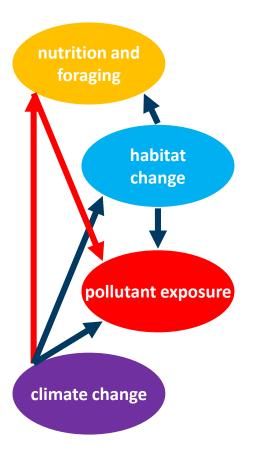
species-specific case studies

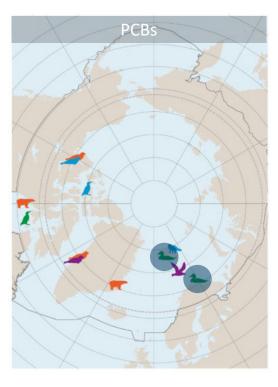

Changing habitats comes with changing dietary pathways of contaminants

Food web case studies



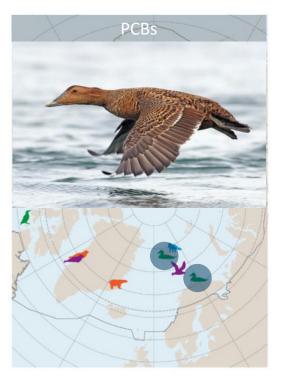
Trophic position (TP)


Study species	Year	Location	Climate metric	Ecological change/variation	PCB/Hg		Reference
					Influence	Variation/change	
Hg							
Marine mammals							
Ringed seal	1994-2010	Central West, North West, and East Greenland	Arctic Oscillation, Ocean temperature, Salinity; Sea-ice cover	Prey availability or type	Total Hg	† in years of ↓ ice and/or † AO (also possibly related to abiotic inputs)	Rigét et al. 2012
	1973-2007	Eastern Amundsen Gulf	Ice-free season length	Diet (Arctic cod amount and age classes)	Total Hg	\uparrow in both long and short ice-free seasons	Gaden et al. 2009
Atlantic walrus	1982-2008	Fotte Basin	North Atlantic Oscillation	None reported	Total Hg	**	Gaden and Stern 20
Beloga	1981-2012	Beaufort Sea	Arctic Oscillation, Pacific Decadal Oscillation, Sea-ice minimum	Unclear (possibly food web structure)	Total Hg	Variable, parallels PDO with 8-year time lag	Loseto et al. 2015
	1984-2008	Hudson Bay	North Atlantic Oscillation	Foraging region or diet	Total Hg	\downarrow parallels $\delta^{\prime a}C\downarrow$ in females	Gaden and Stern 20
Narwhal	1993-2001	Foxe Basin	North Atlantic Oscillation	None reported.	Total Hg	++	Gaden and Stern 20
Marine birds							
Black-legged kittiwake	2008-2009	Svalbard	Sea-ice cover	Diet (subarctic vs Arctic fish)	Total Hg	↓ in years of ↓ ice	Øverjordet et al. 201
Little ank	2008-2009	Svalbard	None identified	None reported.	Total Hg	€ 1	
Thick-billed murre	1975-2013	Canadian High Arctic	None identified	Diet (fish vs invertebrates)	Total Hg	Fuster rate of † trend	Braune et al. 2014
	1993-2013	Northern Hudson Bay	Sea-ice conditions	Diet (subarctic vs Arctic fish)	Total Hg	No trend instead of †trend	Braune et al. 2014

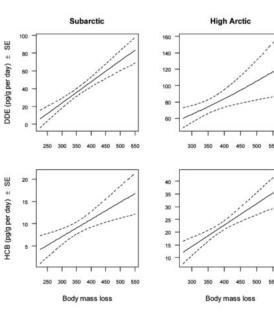


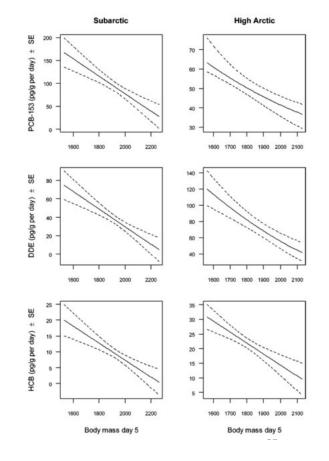
Hg increased by climate warming Hg co-varies with climate oscillation indices

- 1. environmental pathways of contaminants
- 2. habitat properties resulting in changing exposure
- 3. habitat properties resulting in changing dietary ecology and hence contaminant pathways
- 4. nutrition and foraging resulting in changing exposure



species-specific case studies


Study species	Year	Location	Climate metric	Ecological change/variation		PCB/Hg	Reference
					Influence	Variation/change	
CBs							
errestrial mammals							
Arctic fox	1997-2013	Svalburd	Sea-ice extent	Diet (marine vs terrestrial)	ΣΡCB	++	Andersen et al. 2015
Carine mammals							
Ringed seal	1993-2008	Eastern Amundsen Galf	Sen ice brenk up date	Prey availability or type	CB31, CB52, CB101, CB118, CB138, CB153, CB180	†in years of earlier break-up	Gaden et al. 2012
	1993-2008	Eastern Amundsen Gulf	Sea ice break-up date	Prey availability or type	CB28, CB105, CB156	*	Gaden et al. 2012
	1994-2010	West Greenland	Arctic Oscillation, Ocean temperature, Salinity, Sea-ice cover	Prey availability or type	CB153 CB52, CB153	↑ in years of ↓ ice ↑ with ↑ AO or ↑ salinity (related to abiotic inputs)	Rigét et al. 2013
Polar bear	1991-2007	Western Hudson Bay	Sea ice break-up date	Diet (subarctic vs Arctic seals)	ΣPCB	↑ instead of ↓ trend	McKinney et al. 2009
	1984-2011	East Greenland	North Atlantic Oscillation	Diet (subarctic vs Arctic seals)	ΣPCB, CB170/CB190, CB180, CB153	Not significantly slower rate of \downarrow trend	McKinney et al. 2013
darine birds							
Glancous gull	1997-2006	Вјатљауа	Arctic Oscillation	Possibly foraging region, diet or condition	ΣPCB	\uparrow in colder years (LAO), but \uparrow if warmer the previous year (\uparrow AO), (possibly related to \uparrow transport)	Bustnes et al. 2010
Common eider	2005-2009	Northern Norway and Svalbard	Air temperature	Body mass loss / lipid mobilization during fasting	CB153	† in circulating levels in colder years and in colder region (Svalbard)	Bustnes et al. 2012
Thick-billed marre	1975-2013	Canadian High Arctic			ΣΡΟΒο		Braune et al. 2015
	1993-2013	Northern Hudson Bay	Sea-ice conditions	Diet (subarctic vs Arctic fish)	ΣPCB ₄₀	Faster rate of ↓ trend	Braune et al. 2015
Polar be	ar 🧴	Murre	aucous PCBs decreased by	PCBs increased by climate warming PCBs co-vary with climate			
Arctic fo	x X	Glaucous gull					
Ringed seal		Eider climate warming	climate warming	oscillation indic	es		


Effects of climate change on POPs exposure

fasting during breeding

condition at onset of breeding

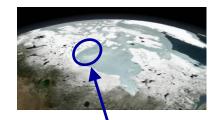
Bustnes et al. 2012. Environ. Sci. Technol. 46

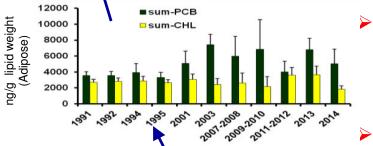
Highlights Findings, Key Messages & Priority Data and Knowledge Needs in the Future

Rune Dietz¹, Robert J. Letcher², Igor Eulaers¹, Jean-Pierre Desforges¹, Christian Sonne¹

² Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research

¹ Department of Environmental Science, Arctic Research Centre, Aarhus University, Roskilde, Denmark


Centre, Carleton University, Ottawa, Ontario, Canada


Arctic Biodiversity Congress, Rovaniemi, Finland; Octpber 9-12, 2018

Some Highlight Findings (as of 2017)

- Legacy chemicals (e.g. PCB, Hg) remain of high concern to Arctic biota, and effects data has been reported for mainly these substances
- Depending on the species/population/tissue contaminant burdens, exposure levels in key Arctic biota (marine and terrestrial mammals, birds and fish) can exceed putative risk threshold levels estimated for non-target species and species from outside the Arctic
- Populations of polar bears, killer whales and seabirds (e.g. thick-billed murrres) presently at highest risk

ARCTIC WILDLIFE AT RISK

In this which performs in defrapping the fits and an information of the performance of the second second and the performance of the second calculated path asymptotic field with the second sec

POLAR BEARS

In one products of the failing products are setting to the middle descent block of a setting products of program (and product products) and after setting products of program (and product program and products) and after products the adapting protocols are set for program (and products) and products are adapting protocols and products that produces are adapting protocols and products and are sequential to a product product program (and program (and products)). The descent products are an expected to be provided products and adapting of administration of an expected to be provided by the descent products and are sequences for the regular based on the dates in access to the results of the regular based on ad-

KILLER WHALES

The mean approaches with spectrum and other material and towershift bird services. The syst with the serve samples that usbasener heads for indigeness commandes. Many different Andre head productions are commandes. Many different Andre head productions are associated and the server locations are therein to be an apply to an even with the heads. Instances are therein to be an apply to an even with the heads. Instances are therein to be an apply to an even with the heads. Instances are therein to be an apply to an even with the heads. Instances are therein to be an apply to an even with the heads.

- Based on PCB concentrations (as the dominant effect contributor for reproductive, immune and/or carcinogenic effects) and a conservative critical body residue for PCBs of 10 μg/g lw, risk quotients (RQ) were calculated and reported for the entire Arctic region and bordering waters
- RQs make it possible to summarize the cumulative effects of environmental contaminant mixtures for which critical body burdens can be estimated

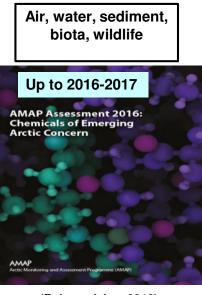
KEY MESSAGES: New and Lasting Impacts of Chemical Exposures in Arctic Wildlife and Fish

Key Message #1:

Legacy chemicals (e.g. PCBs) and mercury continue to pose a significant concern for Arctic biota

Key Message #2:

The suite of environmental contaminants found in many Arctic apex predators is expanding and may require new investigations of their potential biological effects


The suite of environmental contaminants found in many Arctic apex predators is expanding and ma require new investigations of their potential biological effects.

a plain informa is notice the production of lapon assume approximate provide product product approximate or y, note a more fixed to produce produce process means a definition of the state of the state of the state of the definition of the state and state of the state of the state of the state of the state and state of the state of the state of the state.

continue to pose a significant

concern for Arctic biota

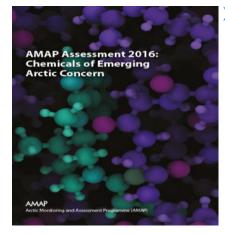
(Released Jan. 2018)

Chemicals of Emerging Arctic Concern (CEACs)

- Per-/polyfluoroalkyl substances (PFASs)
- **Brominated flame retardants** (BFRs) (incl. BDE-209)
- New BFRs (e.g. DBDPE, BTBPE)
- Chlorinated FRs (Dechlorane Plus and other Dechloranes)
- **Organophosphate esters** (OPEs, 20 types)
- Phthalates
- Short-chain chlorinated paraffins (SCCPs)
- Siloxanes
- Pharmaceuticals and personal care products (PPCPs)
- Polychlorinated naphthalenes (PCNs)
- > Hexachlorobutadiene (HCBD)
- Current-use pesticides (CUPs, 16 types)
- > Pentachlorophenol (PCP) / pentachloroanisole (PCA
- Organotins
- Polyaromatic hydrocarbons (PAHs, 16 types)
- "New" unintentionally generated PCBs
- Halogenated natural products (HNPs)
- > Marine plastics and microplastics

> 150 individual and 18 groups of

substances



Chemicals of Emerging Arctic Concern (CEACs)

Biological and toxicological effects of CEACs – Chapter 3

Up until 2017, at present there is essentially <u>a total knowledge gap</u> on CEAC linked biological or toxicological effects in Arctic biota

2010 - 2017

(Released Jan. 2018)

Important recent reviews have been published recently on the (environmental) toxicology (in non-Arctic species) of the CEAC classes:

- Per-/polyfluoroalkyl substances (PFASs)
- Brominated flame retardants (BFRs)
- > Chlorinated FRs (Dechlorane Plus and other Dechloranes)
- Organophosphate esters (OPEs)
- Phthalates
- Siloxanes
- Pharmaceuticals and personal care products (PPCPs)
- Polychlorinated naphthalenes (PCNs)
- Organotins
- Polyaromatic hydrocarbons (PAHs, 16 types)
- >Marine plastics and microplastics

These non-Arctic species reviews showed information suggestive of mechanisms and modes of action and adverse outcome pathways of effects and impacts for Arctic biota

KEY MESSAGES: New and Lasting Impacts of Chemical Exposures in Arctic Wildlife and Fish

Key Message #3:

Improved predictions of contaminant-related risks to Arctic biota will require methods that account for the combined toxicity of realworld, complex, multichemical exposures

Also, changes in food web structure relationships e.g. changes and degradation of Arctic biodiversity

KEY MESSAGE 4

The impact of contaminant exposure in Arctic biota needs to be considered in combination with other natural and anthropogenic stressors.

In addition to being exposed to a complex mixture of environmental contaminants, Arctic biota are subject to numerous natural and anthropogenic stressors including, but not limited to, climate change, hunting pressure, invasive species, emerging pathogens, and changes in food web dynamics. The added influence of these environmental factors, on top of existing chemical exposures, may significantly increase the risk of health effects and population impacts. This observation highlights the need for cross-disciplinary studies that include observations of indigenous knowledge holders, environmental data, and the development of new tools, such as computer models, to integrate data collected from the field into a larger, holistic picture of Arctic wildlife health.

THE IMPACT OF MUITIPLE STRESSORS IN A CHANGING ARCTIC

Risks to wildlife populations are often based on oversimplified scenarios where predicted impacts are estimated based on exposure to a single chemical or stressor. In reality, wildlife are exposed to a diverse and highly complex and interwoven series of natural and anthropogenic stressors that may act cumulatively to impact wildlife health. New approaches that approximate these 'real world' exposures as closely as possible would enable the ability to more accurately predict and anticipate population- and ecosystem-level effects in a rapid changing Arctic environment.

Infectious disease

KEY MESSAGES: Wildlife Health in a Complex &

Changing Arctic

Key Message #4:

Impact of contaminant exposure in Arctic biota needs to be considered in combination with other natural and anthropogenic stressors (including changes in biodiversity)

Relevance to Arctic Biodiversity:

Work by AMAP on biological effects of contaminant on Arctic wildlife complements CAFF work on species trends, changes and biodiversity

Knowledge Gaps and Future Research Priorities

Spatiotemporal aspects of contaminants

- 1. Lack of geographic data for the Russian, Fennoscandian and Alaskan regions
- 2. We need **panArctic harmonisation** in terms of sampling frequency, season and foci species
- 3. We need closer investigation of hotspot, reference and 'unique' regions

Contaminant –specific focus

- 1. Problems to pinpoint individual contaminant versus cocktail effects
- 2. We need to keep focus on existing high levels of legacy contaminants
- 3. We need (more) physicochemical and industrial data for emerging contaminants

Biota considerations

- 1. Lack of focus on marine-terrestrial and wildlifehuman coupling
- 2. We need maturity- and sex specific toxicity, supported by sufficient sample sizes
- 3. Assessments needed in relation to spatial & temporal variation in dietary exposure pathways
- 4. We need better understanding of the role of **invasive** and biovector species in a changing Arctic

Health effects

- 1. Lack of **toxicity thresholds** adapted to specific health endpoints, species and contaminants
- 2. We need better identification of cumulative and interactive effect thresholds
- 3. We need to scale-up individual effects to the population level
- 4. Prediction of effects of complex contaminant mixtures within a multi-stressor framework (e.g. infectious and zoonotic diseases)
- **5. OneHealth concept;** information integration of assessments from wildlife & human health studies

Thank you / Qujannamiik

Panel Discussion

Panel:

Rune Dietz, Igor Eulaers, Robert Letcher, Christian Sonne, Pal Weihe

Charge Questions:

How do we obtain more precise effect levels to proxy population health, and how do we better obtain population effect assessments?

How do contaminants and environmental change synergise, and how does contaminant exposure affect Arctic biodiversity?