Arctic Biodiversity Congress; October 2018 in Rovaniemi, Finland; Session KNO10: Arctic terrestrial invertebrate diversity

Mapping Constraints of Climate and Land-Type on Insect Compositions

Douglas Chesters¹, Philip Beckschäfer^{2,3}, Sarah J. Adamowicz⁴, Michael C. Orr¹, Chao-Dong Zhu¹, Kwok-Pan Chun⁵

1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
 2 Forest Inventory and Remote Sensing, Faculty of Forest Sciences and Forest Ecology, Göttingen University, 37077 Göttingen, Germany.
 3 Northwest German Forest Research Station, 37079 Göttingen, Germany.
 4 Biodiversity Institute of Ontario & Department of Integrative Biology, University of Guelph, Ontario, Canada
 5 Department of Geography, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong Special Administrative Region of China.

Elucidating climate and land type drivers of insects has to deal with very little long term data for insects

 25 years of Malaise trapping in natural reserves of Germany. 75% decline in insect biomass (Hallman et al. 2017)

 Since 1996, climatic and arthropod monitoring at Zackenberg research station, east Greenland (Koltz et al. 2018)

Studies of climate on insect composition usually taxon-limited

Table 2. Altitudinal trends in abundance for selected insect species, excluding host-specific parasitoids and predators

Species	Order	Host plant	Locality	Altitudinal trend	Reference
Strophingia ericae	Hemiptera	Calluna vulgaris	UK	None	Hodkinson et al. (1999)
Strophingia cinereae	Hemiptera	Erica cinerea	UK	Decreasing	Hodkinson et al. (1999)
Yponomeuta mahalebella	Lepidoptera	Prunus mahleb	Spain	Decreasing	Alonso (1999)
Ditropis pteridis	Diptera	Pteridium aquilinum	ÚK	Decreasing at four sites	Lawton et al. (1987)
Chirosia parvicornis	Diptera	Pteridium aquilinum	UK	Decreasing at two out of three sites, none at remainder	Lawton et al. (1987)
Dasineura filicina	Diptera	Pteridium aquilinum	UK	Decreasing at one out of four sites, none at remainder	Lawton et al. (1987)
Dasineura pteridicola	Diptera	Pteridium aquilinum	UK	Decreasing at one out of three sites, none at remainder	Lawton et al. (1987)
Strongylogaster lineata	Hymenoptera	Pteridium aquilinum	UK	None	Lawton et al. (1987)
Tephritis arnicae	Diptera	Arnica montana	Germany	Increasing	Scheidel et al. (2003)
Acyrthosiphon brivicorne	Homoptera	Dryas octopetala	Sweden	Increasing	Strathdee et al. (1995)
Galerucella griscescens	Colcoptera	Sanguisorba tenuifolia	Japan	Decreasing	Suzuki (1998)
Kaltenbachia strobi	Diptera	Picea abies	Switzerland	Increasing	Wermelinger et al. (1995)
Torymus sp.	Hymenoptera	Picea abies	Switzerland	Increasing	Wermelinger et al. (1995)
Cydia strobilella	Lepidoptera	Picea abies	Switzerland	Decreasing	Wermelinger et al. (1995)
Leptocarabus procerulus	Colcoptera	Predator	Japan	Decreasing	Sota (1996)
Leptocarabus arboreus	Coleoptera	Predator	Japan	Increasing	Sota (1996)
Cacopsylla palmeni	Homoptera	Salix lapponum	Norway	Decreasing	Hill & Hodkinson (1995)
Cacopsylla brunneipennis	Homoptera	Salix lapponum	Norway	Decreasing	Hill & Hodkinson (1995)
Neodiprion sertifer	Hymenoptera	Pinus sylvestris	Finland	Increasing	Niemelä et al. (1987)
Dactynotus sp.	Homoptera	Solidago macrophylla	USA	Decreasing	Kelly (1998)
Campiiglossa albiceps	Diptera	Solidago macrophylla	USA	None	Kelly (1998)
Aphid	Homoptera	Polemonium viscosum	USA	Decreasing	Galen (1990)
Lymantria monacha	Lepidoptera	Pinus abies	Italy	Decreasing	Cescatti & Battisti (1992)
Drosophila (12 spp.)	Diptera		Japan	Decreasing	Ichijô et al. (1982)
Drosophila (six spp.)	Diptera		Japan	None	Ichijô et al. (1982)
Drosophila makinoi	Diptera		Japan	Increasing	Ichijô et al. (1982)
Nuculaspis tsugae	Homoptera	Tsuga spp.	Japan	None	McClure (1985)

Hodkinson 2005

nature climate change

PUBLISHED ONLINE: 10 JANUARY 2012 | DOI: 10.1038/NCLIMATE1329

Continent-wide response of mountain vegetation to climate change

Michael Gottfried¹, Harald Pauli²*, Andreas Futschik³, Maia Akhalkatsi⁴, Peter Barančok⁵,

- at continental scale, cold-adapted species decline and the more warm-adapted species increase
- 'at the scale of individual mountains this general trend may not be apparent'

The goal: Real-time understanding of community composition and functions

Bush et al. (2017)

DNA Barcodes to Species-Level Phylogeny

From GBIF to environmental classification: climate

- Climate classification using the Köppen-Geiger climate system
- Kottek et al. (2006) is the most popular system, based on explicit rules of temperature and precipitation conditions
- Limited data, although in some cases
 KG boundaries shared with insect
 species

From GBIF to environmental classification: ecoregion

- Terrestrial ecoregions (Olson et al. 2001)
- Use extensive expert knowledge and existing regional maps
- 3 levels
 - Ecoregion
 - Realm
 - Biome

From GBIF to environmental classification: RS Vegetation analysis

- Vegetation Continuous Fields (VCF) product generated using monthly composites of MODIS 250 and 500 meters Land Surface Reflectance data
- Gives annual global estimates of vegetation cover
 - tree vegetation
 - herbaceous vegetation
 - bare ground percentages

GBIF occurrences for Cold and Polar climates

Analysis in brief

- Geographic observation grouped into sample sites
- Compositional dissimilarities between sites calculated with nonmetric multidimensional scaling
- Based on compositional distances, site hierarchically clustered
- Fitting of environmental variables (vectors) or classes (factors) onto ordination via maximum correlation
- Dissimilarities separated to species and phylogenetic components
- Phylogenetic diversity indices calculated

Descloitres et al. MODIS Team, NASA.

Chesters et al. in submission

Whistle-stop tour of Insects in the Fennoscandian Arctic

- *Bolaria polaris* (Polaris fritillary)
 - Butterfly with high arctic distribution, habitat fell heath
 - t fell

- Entephria polata
 - Geometrid moth of high arctic

- Stonefly Isoperla obscura
- In Fennoscandia, found at high altitudes and latitudes.
- Very sensitive to temperature regimes
- Polar bumblebee, one of the most common bumblebees in the arctic
- Has a congeneric parasite

Alpinobombus. A. Staverløkk

V. Kononenko

Isoperla sp. from W. Graf et al.

Chironomidae Agromyzidae Chironomidae Sciaridae Chironomidae Cantharidae ırvariidae Noctuidae Sciaridae Tenebrionidae e Hippoboscidae Elachistidae Endo ae Hippoboscidae Endomychidae Halictidae Pyralidae Staphylinidae Staphylinidae Languriidae Chironomidae steridae Staphylinidae Ciidae Syrphidae Staphylinidae Crambidae horidae Tipulidae Noctuidae Formicidae Apidae hebrionidae Geometridae Noctuidae Crambidae Staphylinidae Sisyridae Staphylinidae Staphylinidae Staphylinidae Noctuidae Staphylinidae Staphylinidae ••• •• Leiodidae Staphylinidae Staphylinidae Syrphidae Staphylinidae alpingidae Ptillidae Latridiidae Staphylinidae Staphylinidae Noctuidae Staphylinidae Staphylinidae Latridiidae Cantharidae Carabidae dae Ptinidae Salpingidae Cantharidae ulidae Elateridae Ceratopogonidae Cerambycidae Staphylinidae

Compositional Dissimilarity : Rove Beetles (Staphylinidae)

	Tree Cover	Non Tree Vegetation	Latitude	Climate	Ecoregion
Carabida	0.0125	0.0123	0.0074	0.0147	0.1005
Carabius	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Staphylinids	0.0609	0.0613	0.0768	0.0180	0.1219
	(0.001)	(0.001)	(0.001)	(0.002)	(0.001)
Tortricidae	0.0307	0.0213	0.0604	0.0146	0.0763
Tortricidae	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Noctuidae	0.0188	0.0205	0.0125	0.0217	0.1465
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)

Ecoregion: Blue =Taiga Green = Sarmatic mixed forests Red = Montane Birch Forest + grassland

Compositional Dissimilarity : Owlet Moths (Noctuidae)

	Tree Cover	Non Tree Vegetation	Latitude	Climate	Ecoregion
Carabide	0.0125	0.0123	0.0074	0.0147	0.1005
Carabias	(0.001)	(0.001)	(0.001) 0.0768	(0.001)	(0.001)
Ctophylipida	0.0609	0.0613	0.0768	0.0180	0.1219
Staphylinius	(0.001)	(0.001)	(0.001)	(0.002)	(0.001)
Tortricidoo	0.0307	0.0213	0.0604	0.0146	0.0763
Tortricidae	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Noctuidae	0.0188 (0.001)	0.0205 (0.001)	0.0125 (0.001)	0.0217 (0.001)	0.1465 (0.001)

Green = Sarmatic mixed forests

Red = Montane Birch Forest + grassland

Blue =Taiga

Results

- Insect compositional dissimilarity corresponds higher to ecoregion than clime or RS-derived vegetation parameters
- Forests comprise majority of variation, although unique compositions also observed in tundra-taiga of N. America
- Beta diversity greater between classes (ecoregion or clime) than within, although spatially dependent:
 - towards continental scale, beta diversity rises more within ecoregion

Results, composition beyond shared species

		Ecoregion	Clime
Beta	Species Composition	Anosim r=0.70, p<0.001	Anosim r=0.32, p<0.001
	Phylogenetic Diversity	Anosim r=-0.48, p=1	Anosim r=-0.23, p=1
	Mean Phylogenetic Diversity	Anosim r=0.13, p=0.001	Anosim r=-0.01, p=0.67
	Mean Nearest Taxon Distances	Anosim r=0.45, p=0.001	Anosim r=0.13, p=0.001
Alpha	Mean Nearest Taxon Distance	Kruskall-Wallis df=27, p<0.001	Kruskall-Wallis df=11, p<0.001

http://vcresearch.berkeley.edu/

Results, compositional dissimilarity beyond shared species: Mean Nearest Taxon Distance (MNTD)

- Phylogenetic information often viewed as proxy for traits, as relatives usually sharing many traits
- High MNTD in year-round cold and wet areas of Sweden

- Data quality:
 - Currently opportunistic use of observation data (region and taxon bias)
 - Standardized programs such as Malaise trapping with metabarcoding, objective and quantified
- Traits:
 - Are central to understanding compositions in plant ecology.
 - There are very few comprehensive trait databases for invertebrates
 - Recently proposed terrestrial invertebrates traits sensitive to global stressors (Moretti et al. 2017).
- Evolving land and climate classifications
 - Statistical stratification partition variation in independent variables,
 - key variables include temperature, seasonality, growing degree-days, reflecting temperature gradients; aridity
- Climate projections (IPCC) permit predication on different scenarios (macro-ecological modelling)

- Data quality:
 - Currently opportunistic use of observation data (region and taxon bias)
 - Standardized programs such as Malaise trapping with metabarcoding, objective and quantified
- Traits:
 - Are central to understanding compositions in plant ecology.
 - There are very few comprehensive trait databases for invertebrates
 - Recently proposed terrestrial invertebrates traits sensitive to global stressors (Moretti et al. 2017).
- Evolving land and climate classifications
 - Statistical stratification partition variation in independent variables,
 - key variables include temperature, seasonality, growing degree-days, reflecting temperature gradients; aridity
- Climate projections (IPCC) permit predication on different scenarios (macro-ecological modelling)

alpha mean trait diversity, per ecoregion

an trait diversity

ank of abs

- Data quality:
 - Currently opportunistic use of observation data (region and taxon bias)
 - Standardized programs such as Malaise trapping with metabarcoding, objective and quantified
- Traits:
 - Are central to understanding compositions in plant ecology.
 - There are very few comprehensive trait databases for invertebrates
 - Recently proposed terrestrial invertebrates traits sensitive to global stressors (Moretti et al. 2017).
- Evolving land and climate classifications
 - Statistical stratification partition variation in independent variables,
 - key variables include temperature, seasonality, growing degree-days, reflecting temperature gradients; aridity
- Climate projections (IPCC) permit predication on different scenarios (macro-ecological modelling)

Metzger et al. 2013

- Data quality:
 - Currently opportunistic use of observation data (region and taxon bias)
 - Standardized programs such as Malaise trapping with metabarcoding, objective and quantified
- Traits:
 - Are central to understanding compositions in plant ecology.
 - There are very few comprehensive trait databases for invertebrates
 - Recently proposed terrestrial invertebrates traits sensitive to global stressors (Moretti et al. 2017).
- Evolving land and climate classifications
 - Statistical stratification partition variation in independent variables,
 - key variables include temperature, seasonality, growing degree-days, reflecting temperature gradients; aridity
- Climate projections (IPCC) permit predication on different scenarios (macro-ecological modelling)

Conclusions

More information than climate / vegetation alone, is required for describing insect compositional variation

Compositional dissimilarity greater between sites of differing habitat/ climes, although spatially dependent at national-continental scale

Acknowledgements

Funded by

National Science Foundation of China Chinese Academy of Sciences DFG Germany

Insect photos provided by Ken Dolbear

Thanks for listening

welcome to contact me: dchesters@ioz.ac.cn

